
CS-211 Fall 2019 Project – Installment 1 Due: Oct. 2, 2019

Simulating Logic Gates
Background
The Wikipedia article on logic gates starts off with “In electronics, a logic gate is an idealized or

physical device implementing a Boolean function; that is, it performs a logical operation on one

or more binary inputs and produces a single binary output.” Most of you are taking or have

taken a Digital Logic course, so should be very familiar with logic gates by now. The first

installment of the project deals with the capability to simulate the actions of four very simple

gate types, an INV gate, an AND gate, an OR gate and an XOR (exclusive or) gate.

Logic Gate Truth Tables
The behavior of gates can be described using a truth table. The following truth tables describe

the simplest case for the four gate types this project is dealing with. In these tables, the column

“A” represents the truth value of the first input, “B” represents the truth value of the second

input, and “Z” represents the resulting truth value at the output of the gate.

Gate Type A Z

INV (N)

0 1

1 0

Gate Type A B Z

AND (A)

0 0 0

0 1 0

1 0 0

1 1 1

Gate Type A B Z

OR (O)

0 0 0

0 1 1

1 0 1

1 1 1

Gate Type A B Z

XOR (X)

0 0 0

0 1 1

1 0 1

1 1 0

An inverter may only have a single input, but the other three gates may have 1, 2, or more

inputs. A non-inverter with 1 input acts like a buffer – the output value is the same as the input

value. When there are more than two inputs, you can think of the multi-input gate as cascading

two-input gates. For instance, a three-input AND gate can be thought of as two cascading two-

input AND gates, as in the following picture:

https://en.wikipedia.org/wiki/Logic_gate

CS-211 Fall 2019 Project – Installment 1 Due: Oct. 2, 2019

Project Description
Create a C program called qGate.c. This program needs to:

1. Check to make sure there are at least 3 command line inputs specified. If not, print a

message that indicates what the command line should be, and exit with a non-zero

return code.

2. Check the first command line input to make sure it is either ‘N’, ‘A’, ‘O’, or ‘X’. If not,

print a message and exit with a non-zero return code.

3. Loop through the remaining command line inputs. Check the input to make sure it is

either a ‘0’ or ‘1’ to represent false and true respectively. If not, print an error message

and exit with a non-zero return code. If there is more than one input for an inverter,

issue an error message and exit with a non-zero return code.

4. Using all the input values, evaluate the resulting value.

5. Print the result to the user. Your result should be in the form “T(A,B,….) = Z”, where T is

the valid gate type supplied by the user, A is the first input value, B is the second input

value, and so on, and Z is the result you have calculated. Your output should occur on its

own line, and no other output should be produced by your program (unless the input

values are incorrect.)

6. If your program worked correctly, return an exit code of zero.

The following is an example of a correctly coded program:

Hints and Suggestions

• Remember, argv[0] is the command itself. You might want to use this in your messages

instead of hard coding “qGate”.

• In this installment of the project, all you will need from the command line argument is

the first character of each argument. To get the first letter of the ith command line

argument, you can use the notation: argv[i][0].

• I found it easiest to predict the output of a gate, and then when I looped through the

inputs, I used the next input value to modify that output value. When I finish looping

through the inputs, I already have my answer calculated.

• One of the challenges is to make the invocation string (for instance, the “A(1,0,1)” string

in the example above.) I started out by creating an area for this string as follows:

 char invoke[100]={0};

This makes an “invoke” area that is 100 characters long (plenty big enough for this

project), and initializes each character to a null terminator. Then, I can put the gate type

in the first character, and the left parenthesis in the second by doing…

 invoke[0]=gateType; invoke[1]=’(‘;

Then, as I loop through the input characters, I can use the control variable for the loop

>./qGate A 1 0 1
A(1,0,1) = 0
>

CS-211 Fall 2019 Project – Installment 1 Due: Oct. 2, 2019

to figure out where the next input character should be in the invoke string. Note that

each input will have two characters… the input value, and a comma When I’m done

looping through the input, I just replace the last comma with a right parenthesis. Then, I

can print the final result using:

 printf(“%s = %d\n”,invoke,answer);

Project Submission
Upload your qGate.c file in the Project Installment 1 submission area on MyCourses in the

Content area under “Project Submissions”.

Project Grading
After the due date, your submission will be graded as follows. The project is worth 100 points.

Your code will be compared to all other student’s code using an automated code plagiarism

checker that can detect copied code even if you try to “fix” it after copying. Then, your code will

be compiled on a BU Linux machine. If there are compiler errors, the professor will attempt to

fix your code. If your code can be fixed, the rest of the grading will be performed on that fixed

code. Once compiled, your code will be tested with various simple values for gate type and

input values (including invalid input), and the results will be compared to correct results, based

on the requirements above. Points will be deducted for the following reasons:

Problem Deduction

Incorrect submission (e.g. name not qGate.c) -5 points

Compiler or logic error that can be fixed -15 points per error

Unfixable error, or >4 errors -60 points

Compiler warning messages -5 points per type of warning message

Illegible or Poorly formatted code Up to -10 points

Incorrect results -10 points per invocation (up to -40 points)

Late submission -10 points per every 24 hours late

Code matches another student’s code -100 points

