CS-211 Fall 2019 Test 2 Version A Nov. 11, 2019

Name:

1. (10 points) For the following, Check T if the statement is true, or F if the statement is false.

(a) T I:] F : In the declaration char * name="Joe”; the C compiler reserves 8 bytes for a
pointer called name, and initializes that pointer to the location in memory where the literal string
7 Joe” resides.

(b) I:] T F : The expression float y = "I’ / 100.0; fails because C does not know how to
convert a character to a floating point number.

A character literal is really an ASCII 8 bit integer value, and C has no problem converting that
value to floating point before doing the division.

(c) I:‘ T F : The size of a pointer depends on what kind of data it points at.
A pointer is always 8 bytes long on a 64-bit machine, no matter what kind of data it is pointing at.

(d) T I:] F : C protects the value of a caller’s variable by copying that variable’s value into
a parameter when invoking a function. That way, the called function cannot modify the variable.
However, we can override this protection by passing in a reference to the variable as an argument,
instead of passing in the value of the variable.

(e) I:‘ T F : When you invoke a function in C, C evaluates the argument expressions in the
order they appear in your invocation.

The C standard does not require that argument expression get evaluated in order. In fact, the gcc
compiler evaluates the last argument first.

() I:‘ T F : When you define a function, you must specify the return type for all functions
that return a value. If the function does not return a value, no return type is required.

Functions that do not return values MUST specify a return type of void.

(g) I:‘ T F : If you see an expression in C like char c=argv|[2][0]; then you can assume that
the argv matrix is in row major order.

Actually, argv is not a two-dimensionial matrix, but a vector of pointers, which is NOT layed out
in row major order.

(h) T I:] F : The first computer bug was a moth stuck in a relay discovered by a woman who
was a naval officer and one of the first computer programmers in the mid-twentieth century.

(i) I:‘ T F :If a C variable is declared using float x=7.2; then the statments int xy=&x;
printf ("%, (xy)); will print 7.2.
The C compiler issues warning messages because you first set an integer pointer to the address of
a float, and secondly try to print a float from an argument which is an int. The assignment to y

”works”, but *y is the integer interpretation of the floating point bits in x, which will not print as
3.7!

() I:‘ T F : When converting from an integer to a floating point number, the floating point
version of the number is always more precise because it has more decimal places.

Integers always represent a precise integer value. Floating point number are almost always an
approximation, and less precise.

Page 1 of 7

. (10 points) Given the following C code:

#include <stdio.h>

int fib (int x);

int main() {
printf (7 fib (5)=%d\n” ,fib (5));
return 0;

int fib (int x) {
if (x<2) return 1;
return fib (x—1)+fib (x—2);
}

What will get printed?

[JfbG)=1 []fbG)=2 []fib(5)=4 fib(5)=
Working backwards, fib(0)=fib(1)=1, fib(2)=1+1=2, fib(3)

5 [X]fib(s)=8 [] fib(5)=13

2+1=3, fib(4)=3+2=5, fib(5)=5+3=8.

. (10 points) Given the following C program:

Listing 1: cmdf.c

#include <stdio.h>
int main(int argc, char sxxargv) {
char str[5];
for (int i=1; i<argc; i++) {
str[i—1]=argv[i][0];
}

str[4]=0x00;
printf(”str is %s\n”,str);
return 0;

}

If T compile and run this program using the command: ./cmdf testing 123, I get the following results:
str is t1"W. Clearly, there is a bug in the code. What is the most likely explanation for these results?
I:‘ The C compiler did not reserved enough space for the str array.

I:‘ The program wrote past the bounds of the str array.
No value was ever assigned to str[2] and str[3].
I:‘ The str string does not have a null terminator

I:‘ The value of argv[3][0] and argv[4][0] are undefined.
In the given invocation, argc=3, the loops runs for i=1 which writes to str[0], and i=2 which writes to
str[1]. The null terminator is put at str[4], but nothing is written to str[2] and str[3] and since str is
uninitialized, we don’t know what values will be in those elements.

Page 2 of 7

4. (10 points) The following code is taken from the project installment 2 and 3 printCircuit.c program in
the printInstance function:

printf ("\t%s %s(” ,instanceModule (in),instanceName (in));
for (int pi=0; pi<instanceNumPins(in); pi++) {

int pn=instancePin (in,pi);

int nn=pinNet (pn);

printf ("%s” ,netName(nn));

if (pi<(instanceNumPins(in)—1)) printf(”,”);

printf(”);\n”);

The last line of the for loop prints a comma, but does not do so every time. Why is this?
I:‘ The instance pins go from 0 to instanceNumPins(in)-1, so this prints a comma for each instance
pin.

A comma goes after ever instance pin except the last instance pin.
I:‘ Different instances may have different numbers of instance pins.
I:‘ There is a bug in the code... a comma should be printed in every iteration of the loop.

I:‘ If a print circuit has too many commas, it is likely to short-circuit and burn.

Answer the following questions by filling in the blanks.

5. (10 points) Given the following C code:

#include <stdio.h>

int countWords (char txt[]);

int main() {
char str[]="This is a CS—211 test.”;
printf(” There are %d words in: %s\n” ,countWords(str),str);
return 0;

}

int countWords (char xtxt) {
int nw=0;
while (x txt!=0x00) {

while (xtxt!=" 7 && *txt!=0x00) txt++;
nw-+-+;
while (xtxt=" ' && *txt!=0x00) txt++;

}

return nw;

}

What will this code print if compiled and executed?

There are 5 words in: This is a CS-211 test

Page 3 of 7

6. (10 points) Given the following C code:

#include <stdio.h>

int sum(int a, int b) { return atb; }

int mul(int a, int b) { return axb; }

int div(int a, int b) { return a/b; }

int main() {
printf (" Result=%d\n” ,div (mul (sum(1,mul(2,3)),2) ,sum(div(1,4),div(5,2))));
return 0;

}

What will this code print if compiled and executed?

Result=T7

Inside out:
mul(2,3)=6;
sum(1,mul(2,3)) =
mul(sum(1,mul(2,3)),2)
div(1,4) = 0;

div(5,2) = 2;
sum(div(1,4),div(5,2)) = sum(0,2) = 2;
div(mul(sum(1,mul(2,3)),2),sum(div(1,4),div(5,2))) = div(14,2) = 7;

sum(1,6) = T7;
= mul(7,2) = 14;

Page 4 of 7

7. Given the following C program:

Listing 2: factors.c

}

#include <stdio.h>

#include <string.h>

#include <stdlib .h>

void factors(int n,int f, int *nf,int facts[]);
int main(int argc, char sxargv) {

int facts[100]; int numfacts=0; int n=atoi(argv[1l]);
factors (n,2,&numfacts , facts);

printf(”Factors of %d: ” ,n);

for (int i=0;i<numfacts;i++) { printf(”%d ”,facts[i]); }
printf(”\n”);

void factors(int n,int f, int *nf,int facts[]) {

while (0==n%f) { n=n/f; facts[*nf]=f; (xnf)++; }
if (n==1) return;

if (f>=n/2) { facts[+*nf]=n; (*nf)++; return; }
factors (n, f+1,nf, facts);

(a) (5 points) If the factors program were invoked with ./ factors 60, what would the function print?

Factors of 60: 22 35

(b) (5 points) The numfacts variable is a local variable in the main function, initialized to zero. How

can it havea non-zero value after invoking the factors function?

Because we pass in a reference to numfacts, the factors function updates the memory where
numfacts value resides.

(¢) (5 points (bonus)) When factors invokes itself recursively, why does it use nf as an argument instead

of &nf?

Because nf is already a pointer to an integer.

Page 5 of 7

. Given the following C program:

Listing 3: encode.c

#include <stdio.h>

#include <string.h>

#include <assert.h>

#include ”helpers.h”

void encode (char xin ,char xpw);

int main(int argc, char sxargv) {
assert (arge==3);
char buf[100];
strepy (buf,argv [2]);
printf (”"Raw text: %s\n” ,buf);
encode (buf,argv [1]);
printf(”Encoded text: %s\n” ,buf);
return 0;

}

void encode(char xin,char xpw) {
for (int i=0;in[i]!=0x00; i++) {
if (in[i]<’a’ || in[i]>’z’) continue;
in[i]=n2c(c2n(in[i])+pwNun(pw));

}

Which uses the following helpers.h include file:

Listing 4: helpers.h

int c¢2n(char c¢) {
if (c<’a’ || ¢>’2z’) return 0;
return c—’a’;

}

char n2c(int n) {
if (n<0) n+=26;
return ’a’+(n%26);

}

int pwNum(char spw) {
static int pwi=0;
int n=c2n (pw[pwi]);
pwi++; if (pw[pwi]==0x00) pwi=0;
return n;

}

If the decode program is compiled and run, an example output from looks like:

b

>./encode password ”c¢ code is more fun”
Raw text: ¢ code is more fun
Encoded text: r cgva wj pdrw xgb

Page 6 of 7

(a) (10 points) If the encode program were invoked with ./encode ab testing, what would the encoded

result be?

tfsuiog

(b) (20 points) Given the following incomplete code for a decode program:

Listing 5: decode.c

#include <stdio.h>

#include <string.h>

#include <assert.h>

#include ”helpers.h”

void decode(char xin ,char xpw);

int main(int argc, char sxargv) {
assert (argc==3);
char buf[100];
strepy (buf,argv [2]);
printf(”Encoded text: %s\n” ,buf);
decode (buf,argv[1]);
printf(”Decoded text: %s\n” ,buf);
return 0;

}

Write the C function to decode the encoded text produced by the encode program above, assuming
the same password is provided for both encode and decode. The declaration for the decode function
is already provided for you.

void decode (char *in,char xpw) {
for (int i=0;in[i]!=0x00; i++) {
if (in[i]<’a’ || in[i]>’z’) continue;
in[i]=n2c(c2n(in[i]) —pwNum(pw));

Question: 1 2 3 4 5 6 7 8 | Total
Points: 10|10 |10 |10 | 10 | 10 | 10 | 30 100
Bonus Points: | 0 0 0 0 0 0 5 0 5

Page 7 of 7

