
Binghamton

University

CS-211

Fall 2019

Attendance

Please click on A if you are here:

A. I am here today.

Binghamton

University

CS-211

Fall 2019

Data Conversion

Verilog
(Project lecture)

2

Binghamton

University

CS-211

Fall 2019

Verilog

• Hardware Description Language (HDL)

• Used to describe electronic circuits

• Text based (so computers can read), but has the same information as
a circuit schematic

• For our project, we are using a simplified subset of Verilog

• For our purposes, everything in Verilog is pins, nets, and gates
• we will expand the concept of “gates” in the final installment

Binghamton

University

CS-211

Fall 2019

AND_2 Schematic

Binghamton

University

CS-211

Fall 2019

AND_2 Module Pins
Input Pins

Output Pin

Input Pins

Binghamton

University

CS-211

Fall 2019

Module Pins

• Module Pins are the connection to the outside world

• Pins have a name, e.g. A, B, SEL, Z

• Pins have a direction – input or output

• Pins have a value – 1 or 0 or “unknown”
• values may change over time

• Physically, things we can connect to

Binghamton

University

CS-211

Fall 2019

AND_2 Internal Pins Internal Input Pins

Internal Output Pin

Internal Input Pins

Binghamton

University

CS-211

Fall 2019

Internal Pins

• Allow us to connect to gates inside the circuit

• Pins have a direction – input or output

• Pins have a value – 0, 1, or “unknown”
• Value changes over time

• Physically, things we can connect to

• Internal pins don’t have a name,
• But do have a “position”

First Input Pin
Second Input Pin

First Output Pin

Binghamton

University

CS-211

Fall 2019

AND_2 All Pins
Input Pins

Output Pin

Input Pins

Internal Input Pins

Internal Output Pin

Internal Input Pins

Binghamton

University

CS-211

Fall 2019

AND_2 Nets
NetsNetsNets

Binghamton

University

CS-211

Fall 2019

Nets

• Connect pins to each other (like wires)

• Have a net name (may match a pin name)

• Have a net value 0(dark green), 1 (light green) or unknown (blue)

• Have exactly one source pin
• The value of the net is the value of the source

• Have one or more sink pins
• Where the net value is consumed

Binghamton

University

CS-211

Fall 2019

AND_2 Gates
Gate

Binghamton

University

CS-211

Fall 2019

Gates

• Gates have a gate type: inv, and, or, xor
• Each with a specific behavior

• Note: Gates are really circuits of transistors,
but we think of them as abstract gates.

• Gates have an instance name

• Gates have exactly one internal output pin

• Gates have one or more internal input pins

• Gate Pin Order Convention: OUTPUT first, then all inputs

Binghamton

University

CS-211

Fall 2019

AND_2 Schematic & Verilog

// example Verilog file
module AND_2 (A0,A1,Z);

input A0,A1 ;
output Z;
and1 and(Z,A0,A1);
endmodule

Binghamton

University

CS-211

Fall 2019

Verilog Comment

• Like C, everything from // to the end of the line

• Used to help human readers understand what is going on

• Ignored by Verilog “compilers” or readers

Binghamton

University

CS-211

Fall 2019

Verilog Module Statement

module name(pinlist);

• module keyword required

• name – Name of the circuit

• pinlist – Comma separated list of module pins (visible externally)
• Note – direction not specified in the module statement

• Semicolon (;) required

module AND_2 (A0,A1,Z);

Binghamton

University

CS-211

Fall 2019

Verilog Net Declaration Statements
decl_type netlist;

• decl_type – Either input, output, or wire
• input: Nets connected to module input pins

• Net name is the same as the module pin name – so gives direction of input to pin
• output: Nets connected to module output pins

• Net name is the same as the module pin name – so gives direction of output to pin
• wire: internal nets (not connected to a module pin)

• netlist – comma separated list of net names

input A0,A1 ;
output Z;
// No internal nets in AND_2, so no wire statement

Binghamton

University

CS-211

Fall 2019

Verilog Gate Instance Statements

instance_name gate_type(pinlist);

• gate_type: one of inv, and, or, or xor

• instance_name: name of this instance of the gate

• pinlist – nets connected to the gate in gate pin order
• output, then inputs

and1 and(Z,A0,A1);

Binghamton

University

CS-211

Fall 2019

Project Installment 2

• Given a circuit description in a Verilog file that consists of a single
gate, and given values for the input module pins, determine the value
of the output module pin.

Binghamton

University

CS-211

Fall 2019

Verilog Compiler Infrastructure Provided

• I have written a “Verilog compiler” for use in this project.

• The Verilog compiler reads a Verilog file, and keeps track of all the
information in that file.

• The Verilog compiler provides functions you can call to get
information about the Verilog in the file.

• To use this, you must add: #include “verilog.h”

• To use this, you must compile with a command like:
gcc –g –Wall –o simCircuit simCircuit.c verilog.c

Binghamton

University

CS-211

Fall 2019

Top Level functions

• int openModule(char * moduleName)
• e.g. : int mn=moduleName(argv[1]);
• The moduleName paratemeter is a string
• Reads the file moduleName.v in the current directory
• Exits if it finds errors (error checking is not complete)
• Keeps information about the Verilog file in memory
• returns a module number (mn in future parameters)

• void freeModule(int mn)
• e.g. : freeModule(mn);
• Gives back all the memory used to keep module information
• Subsequent calls using the same module number are invalid or incorrect

Binghamton

University

CS-211

Fall 2019

View of Saved Information (pins)

Module
Number

Name #ModPins #Pins #Nets #Instances

1 AND_2 3 6 3 1

…

PinNum Name Dir Val Inst Net

0 A0 I ? - 0

1 A1 I ? - 1

2 Z O ? - 2

3 and1.Z 0 ? 0 2

…

PinIndex PinNum

0 0

1 1

2 2

3 3

4 4

5 5

Module Table

Pin TableModule Pin Xref

Instance Table

Net Table

Binghamton

University

CS-211

Fall 2019

View of Saved Information (nets)

Module
Number

Name #ModPins #Pins #Nets #Instances

1 AND_2 3 6 3 1

…

NetNum Name Val Src #sinks

0 A0 ? 0 1

1 A1 ? 1 1

2 Z ? 3 1

…

NetIndex NetNum

0 0

1 1

2 2

SinkIndex PinNum

0 4

SinkIndex PinNum

0 5

SinkIndex PinNum

0 2

Pin Table

Net Table

Module Table

Module Net Xref
Net Sink Xrefs

Binghamton

University

CS-211

Fall 2019

View of Saved Information (instances)

Module
Number

Name #ModPins #Pins #Nets #Instances

1 AND_2 3 6 3 1

…

InstNum Name Module #pins

0 and1 AND 3

…

InstIndex InstNum

0 0

.. …

PinIndex PinNum NetNum

0 3 2

1 4 0

2 5 1

Pin Table

Instance Table

Module Table

Module Inst Xref
Ints Pin Xrefs

Net Table

Binghamton

University

CS-211

Fall 2019

Conventions for Lists

• When there are lists of things, there is a function to return the
number of elements in that list… e.g.

for(int pi=0; pi<moduleNumModulePins(mn); pi++) {
returns the number of module pins for the module

• Each pin in the module has it’s own “pin number” (pn)

• We need to use a separate function to get the pin number:
int pn=modulePin(mn,pi)

where pi is an integer index such that 0<=pi<numPins

Binghamton

University

CS-211

Fall 2019

Module Functions

• char * moduleName(int mn)
• e.g. : printf(“Module name is %s\n”,moduleName(mn));
• Returns the module name string for the mn module

• int moduleNumModulePins(int mn)
• e.g. : int numModulePins=moduleNumModulePins(mn);
• Returns the number of module pins for the mn module

• int moduleNumPins(int mn)
• e.g. : int numPins=moduleNumPins(int mn);
• Returns the total number of pins (module + internal) for the mn module
• Note that module pins always come first, so numModulePins<=numPins

• int modulePin(int mn,int pi)
• e.g. : int pn=modulePin(mn,pi);
• Returns the pin number for the pith pin in module mn’s list of pins

Binghamton

University

CS-211

Fall 2019

Module Functions (Continued)

• int moduleNumNets(int mn)
• e.g. int numNets=moduleNumNets(mn);
• Returns the number of nets in module mn

• int moduleNet(int mn,int ni)
• e.g. int nn=moduleNet(mn,ni);
• Returns the net number for the nith net in module mn

• int moduleNumInstances(int mn)
• e.g. int numInst=moduleNumInstances(mn);
• Returns the number of instances in module mn

• int moduleInstance(int mn,int ii)
• e.g. int in=moduleInstance(mn,ii);
• Returns the instance number of the iith instance in module mn

Binghamton

University

CS-211

Fall 2019

Pin Functions

• char * pinName(int pn)
• e.g. printf(“Pin %d has name %s\n”,pn,pinName(pn));
• Returns the string pin name for pin pn

• char pinDirection(int pn)
• e.g. if (‘I’==pinDirection(pn)) printf(“input pin\n”);
• Returns the pin direction of pin pn (‘I’ - input or ‘O’ - ouput)

• int pinInstance(int pn)
• e.g. int in=pinInstance(pn);
• Returns the instance number for internal pins, returns -1 for module pins

• int pinNet(int pn)
• e.g. int nn=pinNet(pn);
• Returns the net index of the net connected to pin pn

Binghamton

University

CS-211

Fall 2019

Pin Functions (Continued)

• int setPinValue(int pn,int value)
• e.g. setPinValue(pn,1);

• Returns 1 if the pin value is set, zero if the pin was already at that value
(aborts if pin was set to a different value)

• int pinValue(int pn)
• e.g. if (pinValue(pn)==1) printf(“pin is on\n”);

• Returns the pin value (-1 if not set.)

Binghamton

University

CS-211

Fall 2019

Net Functions

• char * netName(int nn)
• e.g. printf(“Net %s\n”,netName(nn);
• returns string net name for net nn

• int netSource(int nn)
• e.g. int srcPinNum=netSource(nn);
• returns the source pin number for net nn

• int netNumSinks(int nn)
• e.g. int numSinks=netNumSinks(nn);
• returns the number of sink pins for net nn

• int netSink(int nn,int si)
• e.g. int sinkPinNum=netSink(nn,si);
• returns the sink pin number for the sith sink pin on net nn

Binghamton

University

CS-211

Fall 2019

Net Functions (continued)

• int setNetValue(int nn)
• e.g. if (setNetValue(nn)) printf("Net value set to source value");

• Returns 1 if source pin value is known and net value is unknown (-1)

• Returns 0 if source pin value is unkown or source pin value matches net value

• Aborts if source pin value is known and net value is known, but different

• Note – does not propagate net value to sink pins

• int netValue(int nn)
• e.g. if (netValue(nn)==0) printf("Net is off\n");

• Returns the net value (-1 if the net value is not set)

Binghamton

University

CS-211

Fall 2019

Instance Functions

• char * instanceName(int in)
• e.g. printf("Instance %s\n",instanceName(in));

• Returns string name for instance in

• char * instanceModule(int in)
• e.g. if (0==strcmp(instanceModule(in),"and")) printf("This is an and gate\n");

• Note… strcmp returns 0 if arguments match

• Returns string name of the gate for instance in

Binghamton

University

CS-211

Fall 2019

Instance Functions (continued)

• int instanceNumPins(int in)
• e.g. int numInstPins=instanceNumPins(in);

• returns the number of instance pins for this instance

• int instancePin(int in,int pi)
• e.g. int pn=instancePin(in,pi);

• Returns the pin number of the pith instance pin for instance in

• int instanceNet(int in,int pi)
• e.g. int nn=instnaceNet(in,pi);

• Returns the net number connected to the pith instance pin for instance in

Binghamton

University

CS-211

Fall 2019

Print Module Information

• void printModuleIO(int mn)
• e.g. printModuleIO(mn);

• Prints module pins and values on a single line

• void printModuleState(int mn)
• e.g. printModuleState(mn)

• Prints complete information about a module
• All pins – pin number, name, direction, instance number, net number, and value

• All nets – net number, name, source pin and value, sink pins and values

• All instances – instance number, name, and number of connections
• All instance connections – pin number and net number

• Use for debug!

