Binghamton CS-211

University Fall 2019

1> 1Clicker Attendance

Please click on A if you are here:

A. T am here today.

Binghamton CS-211

University Fall 2019

Data Structures

Binghamton CS-211

University Fall 2019

What Is a Data Structure

* A method of organizing (structuring) data to enable problem
solving

 We’ve seen some examples already

* Arrays (vectors, matrices, and cubes)
e Structures

* Now that we know about malloc and pointers and structures, we
can combine all three and go crazy!

Binghamton CS-211

University Fall 2019

Self Referential Data Structures

A data structure defines the layout of memory - like a template

* An instance of a data structure contains the memory for the data
* Data structures may contain pointers

* Pointers may be pointers to other INSTANCES of the same layout!

e Violates the “define before use” rule
stuct selfref {

int fld1;
struct selfref * nextlnstancePtr;

Binghamton

CS-211

University

Fall 2019

Start simple... singly linked list

* A list has multiple items... each item is a “node”

* Each node carries some data - a payload

* To keep things simple, our payload will just be a
single integer.

* A more sophisticated application would have a larger
and more complex payload

e Eac]
 Eac]

1 node links to the next node using the address i,

n list has a beginning — a “head” of the list

 Eac]

h list has an end - a “tail” of the list

Binghamton CS-211

University Fall 2019

Use a structure to define a node

struct sNode {
int payload;
struct sNode * next;

Binghamton CS-211

University Fall 2019

Making new nodes

struct sNode * newSnode(int value) {
struct sNode * newNode;
newNode=(struct sNode *)malloc(sizeof(struct sNode));
if (newNode) {
newNode->payload=value;
newNode->next=NULL;

}

return newNode;

Binghamton CS-211

University Fall 2019

Head and Tall

* Keep track of the head of the list with a pointer:
struct sNode * head=NULL;

* The tail of the list is the node whose next node pointer is NULL

* An empty list is a list in which head==NULL

Binghamton CS-211

University Fall 2019

Starting with a single node

struct sNode * head = newSnode(13);

free(head);
head: 0x600010530
Memory @ 0x600010530 | 0000000D 0000000000000000 |

Binghamton CS-211

University Fall 2019

Inserting a new node at the talil

void addSTail(struct sNode * head,int value) {
assert(head!=NULL);
while(head->next '= NULL) head=head->next;
head->next=newSnode(value);

Binghamton CS-211

University Fall 2019

Example multi-node list

struct sNode * head=newSnode(1 3);
addSTail(head,23);
addSTail(head,9);

_ head gmg 13 | next gug 23 next gug 9 | next gugly

head: 0x600010530

Memory @ 0x600010530 [0000000D 0x6000105a0 |
Memory @ 0x6000105a0 [00000017 0x6000105c0 |
Memory @ 0x6000105c0 [00000009 0x000000000 |

Binghamton CS-211

University Fall 2019

Freeing an Entire List

void freeSList(struct sNode *head) {
if (head==NULL) return;
freeSList(head->next):
free(head);

Binghamton CS-211

University Fall 2019

Recursion and Data Structures

* Reduce the problem by thinking of how to take a SINGLE STEP
* That makes the problem a little bit simpler

e For instance, to free an entire list, all [have to do is free the sub-
list that starts at head->next. When that is done, all that is left is to
free the node at that head is pointing to.

 The sub-list at head->next is smaller than the list at head

* Therefore, the problem of freeing the sub-list has to be easier than the
problem of freeing the whole list

* If the sub-list is empty, then we're almost done.

Binghamton CS-211

University Fall 2019

Freeing a multi-node list

freeSlist(head);

_ head gmg 13 | next gug 23 next gug 9 | next gugly

head: 0x600010530
Memory @ 0x600010530 [0000000C 0x6000105a0 |
Memory @ 0x6000105a0 [00000017 0x6000105c0 |
Memory @ 0x6000105c0 [00000009 0x000000000

Binghamton CS-211

University Fall 2019

Freeing a multi-node list

freeSlist(head); freeSlist(head->next)

head pummmmm— 23 next gug 0 | next guglty

head: 0x6000105a0

Memory @ 0x6000105a0 [00000017 0x6000105c0 |
Memory @ 0x6000105c0 [00000009 0x000000000 |

Binghamton CS-211

University Fall 2019

Freeing a multi-node list

freeSlist(head); freeSlist(head->next); freeList(head->next)

| head g 9 next gugl

head: 0x6000105¢0

Memory @ 0x6000105c0 [00000009 0x000000000 |

Binghamton CS-211

University Fall 2019

Freeing a multi-node list

freeSlist(head); freeSlist(head->next); freeList(head->next)
freeSlist(NULL)

B¢

head: 0x00000000

Binghamton CS-211

University Fall 2019

Freeing a multi-node list

freeSlist(head); freeSlist(head->next); freeList(head->next)
free(head)

| head g 9 next gugl

head: 0x6000105¢0

Memory @ 0x6000105c0 [00000009 0x000000000 |

Binghamton CS-211

University Fall 2019

Freeing a multi-node list

freeSlist(head); freeSlist(head->next)
free(head)

e B
head: 0x6000105a0

Memory @ 0x6000105a0 | 00000017 0x6000105c0]

Binghamton CS-211

University Fall 2019

Freeing a multi-node list

freeSlist(head);
free(head);

_head gug 13 | next gug

head: 0x600010530
Memory @ 0x600010530 [0000000C 0x6000105a0 |

Binghamton CS-211

University Fall 2019

Adding at the front of the list

struct sNode * addSHead(struct sNode * head, int value) {
struct sNode * new=newSnode(value);
new->next=head;
return new;

Binghamton CS-211

University Fall 2019

Example front loaded list

struct sNode * head=newSnode(13);
head=addSHead(head,23);
head=addSHead(head,9);

IR — B B B ¢

head: 0x6000105¢0

Memory @ 0x6000105c0 [00000009 0x6000105a0 |
Memory @ 0x6000105a0 [00000017 0x600010530]
Memory @ 0x600010530 [0000000D 0x000000000 |

Binghamton CS-211
University Fall 2019

Adding in Numeric Order

struct sNode * addSOrdered(struct sNode * head, int value) {
if (head==NULL) return newSnode(value);
if (value<head->payload) {
struct sNode * new = newSnode(value);
new->next=head;
return new;

§

head->next=addSOrdered(head->next,value);
return head;

Binghamton CS-211

University Fall 2019

> [Clicker Question

if (head==NULL) return newSnode(value);
if (value<head->payload) {
struct sNode * new = newSnode(value);
new->next=head;
return new; }
head->next=addSOrdered(head->next,value);

e What is the recursive
step?

if value<head add to front, else add to next sublist
if value>head add to front, else add to next sublist
if value<head add to tail, else add to next sublist

. if value>head add to tail, else add to next sublist
None of the above

Mo 0w >

Binghamton CS-211

University Fall 2019

Making a sorted list

see xmp sll
head=NULL; int i;
for(i=1;i<argc; i++) {
head=addSOrdered(head,atoi(argvli]));
§

/sl 12 45 67 23 3

ENE- IO EIE- LR EIE- ¢

http://www.cs.binghamton.edu/~tbartens/CS211_Fall_2018/examples/xmp_sll/

Binghamton CS-211

University Fall 2019

Stacks

* A stack is a data structure that holds multiple elements
» A stack supports two data operations... push and pop

Binghamton CS-211

University Fall 2019

Activation Records are kept In a stack

* “Current” function on top of stack

« When a function is invoked,
 add its activation record to the top of the stack

 After a function returns,
* remove its activation record from the top of the stack el

27

Binghamton CS-211

University Fall 2019

Singly Linked Lists are good for stacks!

* Push and pop from the head of the stack int pop(struct sNode **stack) {
assert((*stack)!=NULL);
void push(struct sNode **stack,int value) { struct sNode * node=(*stack);
if ((*stack)==NULL) int pval=node->payload;
(*stack)=newSnode(value); (*stack)=node->next;
else (*stack)=addSHead((*stack),value); free(node);
} return pval;
}

int more(struct sNode **stack) {
return (*stack)!=NULL;
}

Binghamton CS-211

University Fall 2019

Using a Stack

int main(int argc,char **argv) {
Int I;
struct sNode * stack=NULL;
for(i=1;i<argc; i++) push(&stack,atoi(argvli]));
printf("Args in reverse... ");
while(more(&stack)) printf("%d ",pop(&stack));
printf("\n");
return O;

Binghamton CS-211

University Fall 2019

Doubly Linked List

* Like two linked lists in one...
 Singly Linked List: head -> next -> next -> ... -> null
* Singly Linked List: tail -> prev -> prev -> ... -> null

* Each node points to its previous neighbor and its next neighbor
* When we modify lists, remember to change both prev and next links

* The entire list has both a head pointer and a tail pointer
* When you change a doubly linked list, you might change:

* head pointer

* tail pointer

* both head and tail pointer
 neither head nor tail pointer

Binghamton CS-211

University Fall 2019

Doubly Linked Lists

struct dNode {
struct dNode * prev;
int payload;
struct dNode * next;

};

struct dList {
struct dNode * head;
struct dNode * tail;

Binghamton CS-211

University Fall 2019

Why doubly linked lists?

* Fast read from front or back of the list
* Forward or Reverse without pre-traversing the list

e Fastinsert at front or back of the list
* insert without traversing the list

* Fast navigation to neighbors in both directions
* No need to traverse the entire list to find your predecessor

 But...

* Extra memory for two pointers per node
* Extra processing to maintain both sets of pointers

Binghamton CS-211

University Fall 2019

Adding to the head of a Doubly Linked

void addDHead(struct dList * list, int value) {

struct dNode * new = newDnode(value);

if (list—>head==NULL) {
assert(list—->tail==NULL);
list—>head=list->tail=new;
return;

}

list->head->prev=new;

new->next=list->head;

list—->head=new;

Binghamton CS-211

University Fall 2019

Adding to a DLL in order

void addDOrdered(struct dList * list, int value) { // node-> first node whose value is >= value
if (list->head==NULL || struct dNode * new = newDnode(value);
list—->head->payload>value) { new->prev=node->prev;
addDHead(list,value); node->prev=new;
return; new->prev->next=new;
} new->next=node;
struct dNode * node; }

for(node=list->head;
node!=NULL && node->payload<value;
node=node->next) {}
if (nhode==NULL) {
addDTail(list,value);
return;

}

Binghamton CS-211

University Fall 2019

Tree Binary Tree

leaves

root

CS-211
Fall 2019

Binghamton CS-211

University Fall 2019

Tree Node Structure

payload
struct bTree {
struct bTree * left;

int payload; 0 1)
struct bTree * right;

Binghamton CS-211

University Fall 2019
Single Node Tree
struct bTree * root=newBTree(13);

@ 0x600010530 { payload=13 left=0x0 right=0x0 }

CS-211
Fall 2019

Binghamton

University

Example 3 node tree

@ 0x600010570 { payload=13 left=0x600010590 right=0x6000105b0 }

@ 0x600010590 { payload=23 left=0x0 right=0x0 }
@ 0x6000105b0 { payload=9 left=0x0 right=0x0 }

Binghamton CS-211

University Fall 2019

Trees are Wonderfully Recursive!

* root -> left is the left sub-tree
It may or may not be empty

* root -> right is the right sub-tree
It may or may not be empty

int sumTree(struct bTree * root) {
int sum=root->payload,;
if (root->left) sum+=sumTree(root->left);
if (root->right) sum+=sumTree(root->right);
return sum,;

Binghamton CS-211

University Fall 2019

Sorted Binary Trees

* Binary trees with a special property...
* Everything in the left sub-tree is less than or equal to the payload
* Everything in the right sub-tree is greater than the payload

void printlncreasing(struct bTree *root) {
if (root->left) printIncreasing(root->left);
printf(“%d\n"root->payload);
if (root->right) printIncreasing(root->right);

Binghamton CS-211

University Fall 2019

Adding to sorted binary trees

void addBtree(struct bTree * root, int value) {
assert(root!=NULL);
if (value<root->payload) {
if (root->left==NULL) root->left=newBtree(value);
else addBtree(root->left,value);
} else {
if (root->right==NULL) root->right=newBtree(value);
else addBtree(root->right,value);
}
}

Binghamton CS-211

University Fall 2019

Unbalanced Binary Trees

Binghamton CS-211

University Fall 2019

(More) Balanced Binary Tree

Binghamton CS-211

University Fall 2019

Binary Tree Depth

* The depth of a binary tree is the distance from the root to the
farthest leaf node

int depthBTree(struct bTree *root) {
if (root==NULL) return O;
int dleft=depthBTree(root->left);
int dright=depthBTree(root->right);
return 1+((dleft > dright) ? dleft : dright);

Binghamton CS-211

University Fall 2019

What depth can | expect?

* Best case - completely balanced binary tree , Each level (except
the last) is completely full
* Firstlevel has one node
* Second level has two nodes
* Third level has four nodes

 mth]Jevel has <= 2D pnodes
e nodes < Y t2d-1=2m_1<2m

* Or, m = log, nodes

Binghamton CS-211

University Fall 2019

Why do | care about depth?

* Time to insert is proportional to the depth
* Time to find a new entry is proportional to depth

* [f [have ndata items, and it takes log,n time to insert each data
item, it takes aboutn X log, n time to insert all n data items

* Sorttimeisn log, n

Binghamton CS-211

University Fall 2019

Resources

* Wikipedia: Linked List, Trees, B-Tree

48

https://en.wikipedia.org/wiki/Linked_list
https://en.wikipedia.org/wiki/Tree_(data_structure)
https://en.wikipedia.org/wiki/B-tree

