
Binghamton

University

CS-211

Fall 2019

Attendance

Please click on A if you are here:

A. I am here today.

Binghamton

University

CS-211

Fall 2019

Data Structures

Binghamton

University

CS-211

Fall 2019

What is a Data Structure

• A method of organizing (structuring) data to enable problem
solving

• We’ve seen some examples already
• Arrays (vectors, matrices, and cubes)

• Structures

• Now that we know about malloc and pointers and structures, we
can combine all three and go crazy!

Binghamton

University

CS-211

Fall 2019

Self Referential Data Structures

• A data structure defines the layout of memory – like a template

• An instance of a data structure contains the memory for the data

• Data structures may contain pointers

• Pointers may be pointers to other INSTANCES of the same layout!

• Violates the “define before use” rule

stuct selfref {

int fld1;

struct selfref * nextInstancePtr;

}

Binghamton

University

CS-211

Fall 2019

Start simple… singly linked list

• A list has multiple items… each item is a “node”

• Each node carries some data – a payload
• To keep things simple, our payload will just be a

single integer.

• A more sophisticated application would have a larger
and more complex payload

• Each node links to the next node using the address

• Each list has a beginning – a “head” of the list

• Each list has an end – a “tail” of the list

Binghamton

University

CS-211

Fall 2019

Use a structure to define a node

struct sNode {

int payload;

struct sNode * next;

};

Binghamton

University

CS-211

Fall 2019

Making new nodes

struct sNode * newSnode(int value) {

struct sNode * newNode;

newNode=(struct sNode *)malloc(sizeof(struct sNode));

if (newNode) {

newNode->payload=value;

newNode->next=NULL;

}

return newNode;

}

Binghamton

University

CS-211

Fall 2019

Head and Tail

• Keep track of the head of the list with a pointer:

struct sNode * head=NULL;

• The tail of the list is the node whose next node pointer is NULL

• An empty list is a list in which head==NULL

Binghamton

University

CS-211

Fall 2019

Starting with a single node

struct sNode * head = newSnode(13);

…

free(head);

head: 0x600010530

Memory @ 0x600010530 [0000000D 0000000000000000]

Graphically: head 13 next ∅

Binghamton

University

CS-211

Fall 2019

Inserting a new node at the tail

void addSTail(struct sNode * head,int value) {

assert(head!=NULL);

while(head->next != NULL) head=head->next;

head->next=newSnode(value);

}

Binghamton

University

CS-211

Fall 2019

Example multi-node list

struct sNode * head=newSnode(13);

addSTail(head,23);

addSTail(head,9);

head: 0x600010530

Memory @ 0x600010530 [0000000D 0x6000105a0]

Memory @ 0x6000105a0 [00000017 0x6000105c0]

Memory @ 0x6000105c0 [00000009 0x000000000]

head 13 next ∅23 next 9 next

Binghamton

University

CS-211

Fall 2019

Freeing an Entire List

void freeSList(struct sNode *head) {

if (head==NULL) return;

freeSList(head->next);

free(head);

}

Binghamton

University

CS-211

Fall 2019

Recursion and Data Structures

• Reduce the problem by thinking of how to take a SINGLE STEP
• That makes the problem a little bit simpler

• For instance, to free an entire list, all I have to do is free the sub-
list that starts at head->next. When that is done, all that is left is to
free the node at that head is pointing to.

• The sub-list at head->next is smaller than the list at head

• Therefore, the problem of freeing the sub-list has to be easier than the
problem of freeing the whole list

• If the sub-list is empty, then we're almost done.

Binghamton

University

CS-211

Fall 2019

Freeing a multi-node list

freeSlist(head);

head: 0x600010530

Memory @ 0x600010530 [0000000C 0x6000105a0]

Memory @ 0x6000105a0 [00000017 0x6000105c0]

Memory @ 0x6000105c0 [00000009 0x000000000]

head 13 next ∅23 next 9 next

Binghamton

University

CS-211

Fall 2019

Freeing a multi-node list

freeSlist(head); freeSlist(head->next)

head: 0x6000105a0

Memory @ 0x600010530 [0000000C 0x6000105a0]

Memory @ 0x6000105a0 [00000017 0x6000105c0]

Memory @ 0x6000105c0 [00000009 0x000000000]

head ∅23 next 9 next

Binghamton

University

CS-211

Fall 2019

Freeing a multi-node list

freeSlist(head); freeSlist(head->next); freeList(head->next)

head: 0x6000105c0

Memory @ 0x600010530 [0000000C 0x6000105a0]

Memory @ 0x6000105a0 [00000017 0x6000105c0]

Memory @ 0x6000105c0 [00000009 0x000000000]

head ∅9 next

Binghamton

University

CS-211

Fall 2019

Freeing a multi-node list

freeSlist(head); freeSlist(head->next); freeList(head->next)

freeSlist(NULL)

head: 0x00000000

Memory @ 0x600010530 [0000000C 0x6000105a0]

Memory @ 0x6000105a0 [00000017 0x6000105c0]

Memory @ 0x6000105c0 [00000009 0x000000000]

head ∅

Binghamton

University

CS-211

Fall 2019

Freeing a multi-node list

freeSlist(head); freeSlist(head->next); freeList(head->next)

free(head)

head: 0x6000105c0

Memory @ 0x600010530 [0000000C 0x6000105a0]

Memory @ 0x6000105a0 [00000017 0x6000105c0]

Memory @ 0x6000105c0 [00000009 0x000000000]

head ∅9 next

Binghamton

University

CS-211

Fall 2019

Freeing a multi-node list

freeSlist(head); freeSlist(head->next)

free(head)

head: 0x6000105a0

Memory @ 0x600010530 [0000000C 0x6000105a0]

Memory @ 0x6000105a0 [00000017 0x6000105c0]

head 23 next

Binghamton

University

CS-211

Fall 2019

Freeing a multi-node list

freeSlist(head);

free(head);

head: 0x600010530

Memory @ 0x600010530 [0000000C 0x6000105a0]

head 13 next

Binghamton

University

CS-211

Fall 2019

Adding at the front of the list

struct sNode * addSHead(struct sNode * head, int value) {

struct sNode * new=newSnode(value);

new->next=head;

return new;

}

Binghamton

University

CS-211

Fall 2019

Example front loaded list

struct sNode * head=newSnode(13);

head=addSHead(head,23);

head=addSHead(head,9);

head: 0x6000105c0

Memory @ 0x6000105c0 [00000009 0x6000105a0]

Memory @ 0x6000105a0 [00000017 0x600010530]

Memory @ 0x600010530 [0000000D 0x000000000]

head 9 next ∅23 next 13 next

Binghamton

University

CS-211

Fall 2019

Adding in Numeric Order
struct sNode * addSOrdered(struct sNode * head, int value) {

if (head==NULL) return newSnode(value);

if (value<head->payload) {

struct sNode * new = newSnode(value);

new->next=head;

return new;

}

head->next=addSOrdered(head->next,value);

return head;

}

Binghamton

University

CS-211

Fall 2019

Question

• What is the recursive
step?

A. if value<head add to front, else add to next sublist

B. if value>head add to front, else add to next sublist

C. if value<head add to tail, else add to next sublist

D. if value>head add to tail, else add to next sublist

E. None of the above

if (head==NULL) return newSnode(value);

if (value<head->payload) {

struct sNode * new = newSnode(value);

new->next=head;

return new; }

head->next=addSOrdered(head->next,value);

Binghamton

University

CS-211

Fall 2019

Making a sorted list

head=NULL; int i;

for(i=1;i<argc; i++) {

head=addSOrdered(head,atoi(argv[i]));

}

./sll 12 45 67 23 3

3 12 23 45 67 ∅

see xmp_sll

http://www.cs.binghamton.edu/~tbartens/CS211_Fall_2018/examples/xmp_sll/

Binghamton

University

CS-211

Fall 2019

Stacks

• A stack is a data structure that holds multiple elements

• A stack supports two data operations… push and pop

Binghamton

University

CS-211

Fall 2019

Activation Records are kept in a stack

• “Current” function on top of stack

• When a function is invoked,
• add its activation record to the top of the stack

• After a function returns,
• remove its activation record from the top of the stack

27

Binghamton

University

CS-211

Fall 2019

Singly Linked Lists are good for stacks!

• Push and pop from the head of the stack

void push(struct sNode **stack,int value) {

if ((*stack)==NULL)

(*stack)=newSnode(value);

else (*stack)=addSHead((*stack),value);

}

int more(struct sNode **stack) {

return (*stack)!=NULL;

}

int pop(struct sNode **stack) {

assert((*stack)!=NULL);

struct sNode * node=(*stack);

int pval=node->payload;

(*stack)=node->next;

free(node);

return pval;

}

Binghamton

University

CS-211

Fall 2019

Using a Stack

int main(int argc,char **argv) {

int i;

struct sNode * stack=NULL;

for(i=1;i<argc; i++) push(&stack,atoi(argv[i]));

printf("Args in reverse... ");

while(more(&stack)) printf("%d ",pop(&stack));

printf("\n");

return 0;

}

Binghamton

University

CS-211

Fall 2019

Doubly Linked List

• Like two linked lists in one…
• Singly Linked List: head -> next -> next -> … -> null
• Singly Linked List: tail -> prev -> prev -> … -> null

• Each node points to its previous neighbor and its next neighbor
• When we modify lists, remember to change both prev and next links

• The entire list has both a head pointer and a tail pointer

• When you change a doubly linked list, you might change:
• head pointer
• tail pointer
• both head and tail pointer
• neither head nor tail pointer

Binghamton

University

CS-211

Fall 2019

Doubly Linked Lists

struct dNode {
struct dNode * prev;
int payload;
struct dNode * next;

};

struct dList {
struct dNode * head;
struct dNode * tail;

};

Binghamton

University

CS-211

Fall 2019

Why doubly linked lists?

• Fast read from front or back of the list
• Forward or Reverse without pre-traversing the list

• Fast insert at front or back of the list
• insert without traversing the list

• Fast navigation to neighbors in both directions
• No need to traverse the entire list to find your predecessor

• But…
• Extra memory for two pointers per node
• Extra processing to maintain both sets of pointers

Binghamton

University

CS-211

Fall 2019

Adding to the head of a Doubly Linked

void addDHead(struct dList * list, int value) {
struct dNode * new = newDnode(value);
if (list->head==NULL) {

assert(list->tail==NULL);
list->head=list->tail=new;
return;

}
list->head->prev=new;
new->next=list->head;
list->head=new;

}

Binghamton

University

CS-211

Fall 2019

Adding to a DLL in order

void addDOrdered(struct dList * list, int value) {
if (list->head==NULL ||

list->head->payload>value) {
addDHead(list,value);
return;

}
struct dNode * node;
for(node=list->head;

node!=NULL && node->payload<value;
node=node->next) {}

if (node==NULL) {
addDTail(list,value);
return;

}

// node-> first node whose value is >= value
struct dNode * new = newDnode(value);
new->prev=node->prev;
node->prev=new;
new->prev->next=new;
new->next=node;

}

Binghamton

University

CS-211

Fall 2019

Tree Binary Tree

root

branches

leaves

Binghamton

University

CS-211

Fall 2019

Computer Science Binary Tree
root

branches

leaves

Binghamton

University

CS-211

Fall 2019

Tree Node Structure

struct bTree {

struct bTree * left;

int payload;

struct bTree * right;

};

left payload
13

right

∅ ∅

Binghamton

University

CS-211

Fall 2019

Single Node Tree

struct bTree * root=newBTree(13);

@ 0x600010530 { payload=13 left=0x0 right=0x0 }

left payload
13

right

Binghamton

University

CS-211

Fall 2019

Example 3 node tree

@ 0x600010570 { payload=13 left=0x600010590 right=0x6000105b0 }

@ 0x600010590 { payload=23 left=0x0 right=0x0 }

@ 0x6000105b0 { payload=9 left=0x0 right=0x0 }

9

13

23

∅ ∅
∅

Binghamton

University

CS-211

Fall 2019

Trees are Wonderfully Recursive!

• root -> left is the left sub-tree
• It may or may not be empty

• root -> right is the right sub-tree
• It may or may not be empty

int sumTree(struct bTree * root) {
int sum=root->payload;
if (root->left) sum+=sumTree(root->left);
if (root->right) sum+=sumTree(root->right);
return sum;

}

Binghamton

University

CS-211

Fall 2019

Sorted Binary Trees

• Binary trees with a special property…

• Everything in the left sub-tree is less than or equal to the payload

• Everything in the right sub-tree is greater than the payload

void printIncreasing(struct bTree *root) {

if (root->left) printIncreasing(root->left);

printf(“%d\n”,root->payload);

if (root->right) printIncreasing(root->right);

}

Binghamton

University

CS-211

Fall 2019

Adding to sorted binary trees

void addBtree(struct bTree * root, int value) {
assert(root!=NULL);
if (value<root->payload) {

if (root->left==NULL) root->left=newBtree(value);
else addBtree(root->left,value);

} else {
if (root->right==NULL) root->right=newBtree(value);
else addBtree(root->right,value);

}
}

Binghamton

University

CS-211

Fall 2019

Unbalanced Binary Trees

5

4

3

2

1

∅

∅

∅

∅

∅∅

Binghamton

University

CS-211

Fall 2019

(More) Balanced Binary Tree

5

4

3

2

1

∅

∅
∅

∅∅

Binghamton

University

CS-211

Fall 2019

Binary Tree Depth

• The depth of a binary tree is the distance from the root to the
farthest leaf node

int depthBTree(struct bTree *root) {

if (root==NULL) return 0;

int dleft=depthBTree(root->left);

int dright=depthBTree(root->right);

return 1+((dleft > dright) ? dleft : dright);

}

Binghamton

University

CS-211

Fall 2019

What depth can I expect?

• Best case – completely balanced binary tree , Each level (except
the last) is completely full

• First level has one node
• Second level has two nodes
• Third level has four nodes
• …
• mth level has <= 2(m-1) nodes

• 𝑛𝑜𝑑𝑒𝑠 ≤ σ𝑑=1
𝑚−1 2𝑑−1 = 2𝑚 − 1 < 2𝑚

• Or, 𝑚 ≥ log2 𝑛𝑜𝑑𝑒𝑠

Binghamton

University

CS-211

Fall 2019

Why do I care about depth?

• Time to insert is proportional to the depth

• Time to find a new entry is proportional to depth

• If I have n data items, and it takes log2n time to insert each data
item, it takes about 𝑛 × log2 𝑛 time to insert all n data items

• Sort time is 𝑛 log2 𝑛

Binghamton

University

CS-211

Fall 2019

Resources

• Wikipedia: Linked List, Trees, B-Tree

48

https://en.wikipedia.org/wiki/Linked_list
https://en.wikipedia.org/wiki/Tree_(data_structure)
https://en.wikipedia.org/wiki/B-tree

