
Binghamton

University

CS-211

Fall 2019

Attendance

Please click on A if you are here:

A. I am here today.

Binghamton

University

CS-211

Fall 2019

Dynamic Memory

Binghamton

University

CS-211

Fall 2019

Static Memory

• Define variables when we write code

• When we write the code we decide
• What the type of the variable is

• How big array sizes will be

• etc.

• These cannot change when we run the code!

• For example:

char buffer[100]=“This is a test.”;

3

Binghamton

University

CS-211

Fall 2019

Implications of Static Memory

• Imposes limits on what our programs can handle
• char buffer[100];

• readLine(&buffer[0]) can’t handle a line that’s more than 99 chars long!

• Forces us to allocate enough space for the worst case
• Waste space for the average case!

char buffer[4096]; // More than enough for one line

4

Binghamton

University

CS-211

Fall 2019

Dynamic Memory

• Standard library function call to request new memory

#include <stdlib.h>

void * malloc(int size);

5

Number of Bytes requested

Address of space returned
NULL if no space is available
Type is pointer to nothing.

Binghamton

University

CS-211

Fall 2019

What does malloc mean?

• (Abbreviation for “memory allocation”)

• Operating system “owns” a portion of the address spaced called
the “HEAP” – a heap of memory

• When you invoke malloc, the operating system finds a portion of
the heap large enough to hold the number of bytes you requested

• By returning the address of that memory to you, the Operating
System is granting control of that memory to you!

• Operating system guarantees that no one other than your program
will use that memory!

6

Binghamton

University

CS-211

Fall 2019

What’s in malloc’ed memory?

• malloc does not initialize memory for you!

• You get whatever is in memory when malloc completes

• Alternative: calloc
• void *calloc(int num,int size);

• Allocs “num” contiguous elements of size bytes each

• Initializes everything to zero

7

Binghamton

University

CS-211

Fall 2019

The malloc “contract”

• You are guaranteed sole use of malloc’ed memory
• Nothing outside of your program will read or write that memory
• When you are finished using that memory, you must give it back to

the operating system!

char * buffer=(char *)malloc(300); // get 300 bytes from heap

// use buffer here

free(buffer); // return buffer 300 bytes to the heap

8

Binghamton

University

CS-211

Fall 2019

Graphic View of Heap

9

char * x=malloc(1200);

char * y=malloc(900);

free(y);

free(x);

Binghamton

University

CS-211

Fall 2019

Using Dynamic Memory for Strings

• We can use the library function fgets to read from a file until the
next newline

• fgets puts a null terminator after the newline

• fgets returns a NULL address at the end of the file

• fgets requires you to provide memory to write to

• Use "malloc" to provide the result to the user

Binghamton

University

CS-211

Fall 2019

A typical "nextLine" function

char * nextLine(FILE *codeFile) {

static char buf[4096];

if (fgets(buf,sizeof(buf),codeFile)==NULL) return NULL;

char * line=malloc(strlen(buf)+1);

strcpy(line,buf);

return line;

}

Binghamton

University

CS-211

Fall 2019

Using "nextLine"

int ln=1;

while(1) {

char * line=nextLine(codeFile);

if (line==NULL) break;

printf("%3d: %s",ln++,line);

free(line);

}

Binghamton

University

CS-211

Fall 2019

Why Dynamic

• Get exactly as much memory as you need
• No program limits

• No wasted space

• Get memory as many times as you need
• e.g. memory for each line

• Don’t have to guess how big the line is

• Don’t care how many lines you need!

13

Binghamton

University

CS-211

Fall 2019

Why is “free” important?

• As long as you “own” memory, no-one else can use it

• If you don’t free, eventually, nothing is left in the heap
• malloc then returns NULL pointers

• small print… when your program exits, any space you have malloc’ed is freed.

• It’s not uncommon to run for days and days

• Do you turn off your laptop? Many programs start when you turn on your laptop, and don’t
stop until you turn off your laptop.

• Be a good citizen… free your malloc’ed memory

14

Binghamton

University

CS-211

Fall 2019

Problem: Dangling Pointers

char *buffer=(char *)malloc(300); // get 300 bytes

strcpy(buffer,”This is a test”); // use it

free(buffer);

strcpy(buffer,”This was a test”);

15

returns space to heap
does not change

the value of buffer!

writes to memory I no longer own!
May work, but cause other problems

May cause segmentation violation

Binghamton

University

CS-211

Fall 2019

strdup

char * strdup(char * from);

• Combination of malloc and strcpy

char * strdup(char *from) {

char *to=

malloc(strlen(from)+1);

strcpy(from,to);

return to;

}

• Need to free result!

char buffer[4096];

while (!feof(stdin)) {

buffer=getLine();

char *ln=strdup(buffer);

…

}

for(…)

free(ln);

}

16

Binghamton

University

CS-211

Fall 2019

"nextLine" with strdup

char * nextLine(FILE *codeFile) {

static char buf[4096];

if (fgets(buf,sizeof(buf),codeFile)==NULL) return NULL;

return strdup(buf);

// char * line=malloc(strlen(buf)+1);

// strcpy(line,buf);

// return line;

}

Binghamton

University

CS-211

Fall 2019

Using Dynamic Memory: Dynamic Array

• Suppose we want an array of integers, but we don't know how
many.

• We want to add new values to the end of the array

• We want to be able to get or put data into known indexes of the array

• Proposal… keep track of three data items:
• number of integers we can use

• number of integers we are using

• pointer to an array of integers

Binghamton

University

CS-211

Fall 2019

Question

• What data structure
should we use?

A. An integer

B. A float

C. An array of integers

D. An array of pointers

E. A structure

• number of integers we can use
• number of integers we are using
• pointer to an array of integers

Binghamton

University

CS-211

Fall 2019

A structure for a dynamic array

struct dynArrayStruct {

int max; // Number of integers at *data

int used; // Number of integers we are using

int *data; // Pointer to an array of integers

};

Binghamton

University

CS-211

Fall 2019

Structure vs. Structure Pointer

• We could pass the entire structure in as an argument
• Need to copy 2 ints and a pointer – 16 bytes

• Doesn't allow us to update the caller's view of the structure!

• Therefore need to return the structure, but we may want to return other
data!

• It's better to pass a pointer to the structure
• Only copies a pointer – 8 bytes

• Allows the functions to update the structure values

• No extra return required

Binghamton

University

CS-211

Fall 2019

Creating a Dynamic Array

• Need a function to
• Create a new instance of the dynArrayStruct structure

• Including reserving memory for the structure itself!

• Initialize all the fields

• Return a pointer to the structure

Binghamton

University

CS-211

Fall 2019

newDynArray()

struct dynArrayStruct * newDynArray() {

struct dynArrayStruct *n=

malloc(sizeof(struct dynArrayStruct));

n->max=16;

n->used=0;

n->data=(int *)malloc(sizeof(int)*n->max);

return n;

}

Binghamton

University

CS-211

Fall 2019

The C “sizeof” operator/function

• Argument can be:
• Type

• Variable (or expression)

• Returns : number of bytes required for that type or for a variable
in bytes

sizeof(char)==1, sizeof(int)==4, sizeof(num[4])==16

sizeof(struct node)==8 (int value; struct node *next)

24

Binghamton

University

CS-211

Fall 2019

Need an add function

• Allow the user to add a new value

• If the dynamic array is not large enough to hold a new value
• Make a new temporary array that is double the size

• Copy the old array values to the new array

• Free the memory for the old array

• Update the dynamic array structure

• Now, the array is big enough…
• put the users value into the array

• Increment the number of used elements of the array

Binghamton

University

CS-211

Fall 2019

Dynamic Array "add" function

void add(struct dynArrayStruct *da,int val) {
if (da->used>=da->max) { // At the limit... need to grow the array

int *temp=malloc(sizeof(int)*2*da->max); // Double the size
memcpy(temp,da->data,sizeof(int)*da->max); // Copy old data to new
free(da->data); // Free old data
da->data=temp; // Copy old data to new
da->max*=2;

}

da->data[da->used]=val;
da->used++;

}

Binghamton

University

CS-211

Fall 2019

Dynamic Array get and put functions

int get(struct dynArrayStruct *da,int index) {

assert(index<da->used && index>=0);

return da->data[index];

}

void put(struct dynArrayStruct *da,int index,int val) {

assert(index<da->used &&index>=0);

da->data[index]=val;

}

Binghamton

University

CS-211

Fall 2019

Array Bounds Checking

• Dynamic arrays can perform array bounds checking!

assert(index<da->used && index>=0);

Binghamton

University

CS-211

Fall 2019

Freeing a Dynamic Array

void freeDynArray(struct dynArrayStruct *da) {

free(da->data);

free(da);

}

Binghamton

University

CS-211

Fall 2019

Example Dynamic Array Use

• See useDyn.c

Binghamton

University

CS-211

Fall 2019

VALGRIND

• Memory Leak: Memory that has been malloc’ed, but not free’d

• Special program: “valgrind”
• monitors each malloc

• monitors each free

• Reports on mallocs that have no corresponding free when program exits

• run as: “valgrind --leak-check=full ./program arg1 arg2 <input.txt

• Also reports on references to free’d memory

• Also reports on array bounds violations

• (Not available on Cygwin)

31

Binghamton

University

CS-211

Fall 2019

Alternative: Garbage Collection

• Need to know when programmer is using memory
• Use of pointers introduce aliases
• Therefore, pointers and garbage collection don’t go together

• Periodically stop program execution for garbage collection

• “Automatically” free any memory that the program is no longer
using.

• Requires significant analysis to ensure you don’t throw away something
useful

• Adds about 10% performance penalty

• Benefit: Allows programmers to be sloppy housekeepers

32

Binghamton

University

CS-211

Fall 2019

More examples of malloc and free

• verilog2.c (Project 3)
• malloc is invoked to provide space for identifiers

• No need to free because we are only working with one file

• verilog3.c (Project 4)
• malloc is invoked to provide space for identifiers

• malloc is used to keep memory for each pin, net, instance, and module

• When a module is freed, free all the data for all pins, nets, instances in the
module.

Binghamton

University

CS-211

Fall 2019

Resources

• Programming in C, Chapter 16 (Dynamic Memory Allocation)

• Wikipedia Memory Management
https://en.wikipedia.org/wiki/Memory_management

• valgrind home http://valgrind.org/

• Dynamic Memory Allocation Tutorial
http://randu.org/tutorials/c/dynamic.php

34

https://en.wikipedia.org/wiki/Memory_management
http://valgrind.org/
http://randu.org/tutorials/c/dynamic.php

