Binghamton CS-211

University Fall 2019

1> 1Clicker Attendance

Please click on A if you are here:

A. T am here today.



Binghamton CS-211

University Fall 2019

~ Dynamic Memory




Binghamton CS-211

University Fall 2019

Static Memory

 Define variables when we write code

* When we write the code we decide
* What the type of the variable is
* How big array sizes will be
* etc.

* These cannot change when we run the code!

* For example:
char buffer[100]="This is a test.”;



Binghamton CS-211

University Fall 2019

Implications of Static Memory

* Imposes limits on what our programs can handle
* char buffer[100];
* readLine(&buffer[0]) can’t handle a line that’s more than 99 chars long!

* Forces us to allocate enough space for the worst case
» Waste space for the average case!

char buffer[4096]; // More than e




Binghamton CS-211

University Fall 2019

Dynamic Memory

 Standard library function call to request new memory

#include <stdlib.h>
Number of Bytes requested

_void *|malloc(int size);

Address of space returned

NULL if no space is available
Type is pointer to nothing.




Binghamton CS-211

University Fall 2019

What does malloc mean?

* (Abbreviation for “memory allocation”)

* Operating system “owns” a portion of the address spaced called
the “HEAP” - a heap of memory

* When you invoke malloc, the operating system finds a portion of
the heap large enough to hold the number of bytes you requested

* By returning the address of that memory to you, the Operating
System is granting control of that memory to you!

* Operating system guarantees that no one other than your program
will use that memory!



Binghamton CS-211

University Fall 2019

What's in malloc’ed memory?

* malloc does not initialize memory for you!

* You get whatever is in memory when malloc completes

* Alternative: calloc
* void *calloc(int num,int size);
* Allocs “num” contiguous elements of size bytes each
* Initializes everything to zero



Binghamton CS-211

University Fall 2019

The malloc “contract”

* You are guaranteed sole use of malloc’ed memory
* Nothing outside of your program will read or write that memory

* When you are finished using that memory, you must give it back to
the operating system!

char * buffer=(char *)malloc(300); // get 300 bytes from heap
/] use buffer here

free(buffer); // return buffer 300 bytes to the heap



Binghamton CS-211

University Fall 2019

Graphic View of Heap

char * x=malloc(1200); .
char * y=malloc(900);
o - .

free(x);




Binghamton CS-211

University Fall 2019

Using Dynamic Memory for Strings

* We can use the library function fgets to read from a file until the
next newline
* fgets puts a null terminator after the newline
* fgets returns a NULL address at the end of the file
* fgets requires you to provide memory to write to

* Use "malloc” to provide the result to the user



Binghamton CS-211

University Fall 2019

A typical "nextLine" function

char * nextLine(FILE *codeFile) {
static char buf[4096];
if (fgets(buf,sizeof(buf),codeFile)==NULL) return NULL;
char * line=malloc(strlen(buf)+1);
strcpy(line,buf);
return line;




Binghamton CS-211

University Fall 2019

Using "nextLine"

int In=1;

while(1) {
char * line=nextLine(codeFile);
if (line==NULL) break;
printf("%3d: %s",In++,line);
free(line);



Binghamton CS-211

University Fall 2019

Why Dynamic

* Get exactly as much memory as you need
* No program limits
* No wasted space

* Get memory as many times as you need
* e.g. memory for each line

* Don’t have to guess how big the line is
* Don’t care how many lines you need!

13



Binghamton CS-211

University Fall 2019

Why is “free” important?

* As long as you “own” memory, no-one else can use it

* If you don't free, eventually, nothing is left in the heap
* malloc then returns NULL pointers

* small print... when your program exits, any space you have malloc’ed is freed.
 [t's not uncommon to run for days and days

* Do you turn off your laptop? Many programs start when you turn on your laptop, and don’t
stop until you turn off your laptop.

* Be a good citizen... free your malloc’ed memory

14



CS-211
Fall 2019

Binghamton

University

Problem: Dangling Pointers

char *buffer=(char *)malloc(300); // get 300 bytes
strcpy(buffer,”This is a test”); // use it

free(buffer); returns space to heap
does not change
strcpy(buffer,”This was a test”); the value of buffer!

writes to memory I no longer own!

May work, but cause other problems
May cause segmentation violation

15




Binghamton CS-211

University Fall 2019

strdup

char * strdup(char * from); char buffer[4096];
 Combination of malloc and strcpy While (!feof(stdin)) {
char * strdup(char *from) { buffer=getLine();
char *to= char *In=strdup(buffer);
malloc(strlen(from)+1);
strcpy(from,to); }
return to; for(...)
) free(ln);

 Need to free result! }

16



Binghamton CS-211

University Fall 2019

"nextLine" with strdup

char * nextLine(FILE *codeFile) {
static char buf[4096];
if (fgets(buf,sizeof(buf),codeFile)==NULL) return NULL;
return strdup(buf);
/] char * line=malloc(strlen(buf)+1);
/] strcpy(line,buf);
/| return line;




Binghamton CS-211

University Fall 2019

Using Dynamic Memory: Dynamic Array

* Suppose we want an array of integers, but we don't know how
many.
* We want to add new values to the end of the array
* We want to be able to get or put data into known indexes of the array

* Proposal... keep track of three data items:
* number of integers we can use
* number of integers we are using
 pointer to an array of integers



Binghamton CS-211

University Fall 2019

> [Clicker Question

e What data structure

* number of integers we can use
should we use?

* number of integers we are using
* pointer to an array of integers

A. An integer

B. Afloat

C. An array of integers
D. An array of pointers
E. A structure



Binghamton CS-211

University Fall 2019

A structure for a dynamic array

struct dynArrayStruct {
int max; // Number of integers at *data
int used; // Number of integers we are using
int *data; // Pointer to an array of integers



Binghamton CS-211

University Fall 2019

Structure vs. Structure Pointer

* We could pass the entire structure in as an argument
* Need to copy 2 ints and a pointer — 16 bytes
* Doesn't allow us to update the caller's view of the structure!

* Therefore need to return the structure, but we may want to return other
data!

* [t's better to pass a pointer to the structure
* Only copies a pointer - 8 bytes
» Allows the functions to update the structure values
* No extra return required



Binghamton CS-211

University Fall 2019

Creating a Dynamic Array

* Need a function to

* Create a new instance of the dynArrayStruct structure
 Including reserving memory for the structure itself!

» [nitialize all the fields
» Return a pointer to the structure



Binghamton CS-211

University Fall 2019

newDynArray()

struct dynArrayStruct * newDynArray() {
struct dynArrayStruct *n=
malloc(sizeof(struct dynArrayStruct));
n->max=16;
n->used=0;
n->data=(int *)malloc(sizeof(int)*n->max);
return n;



Binghamton CS-211

University Fall 2019

The C “sizeof” operator/function

* Argument can be:

* Type
* Variable (or expression)

* Returns : number of bytes required for that type or for a variable
in bytes

sizeof(char)==1, sizeof(int)==4, sizeof(hum[4])==16
sizeof(struct node)==8 (int value; struct node *next)

24



Binghamton CS-211

University Fall 2019

Need an add function

e Allow the user to add a new value

* If the dynamic array is not large enough to hold a new value
* Make a new temporary array that is double the size
* Copy the old array values to the new array
* Free the memory for the old array
* Update the dynamic array structure

* Now, the array is big enough...
 put the users value into the array
* Increment the number of used elements of the array



CS-211
Fall 2019

Binghamton

University

Dynamic Array "add" function

void add(struct dynArrayStruct *da,int val) {
if (da->used>=da->max) { // At the limit... need to grow the array
int *temp=malloc(sizeof(int)*2*da->max); // Double the size
memcpy(temp,da->data,sizeof(int)*da->max); // Copy old data to new
free(da->data); // Free old data
da->data=temp; // Copy old data to new
da->max*=2;

}

da->data[da->used]=val;
da->used++;

}



Binghamton CS-211

University Fall 2019

Dynamic Array get and put functions

int get(struct dynArrayStruct *da,int index) {
assert(index<da->used && index>=0);
return da->datafindex];

}

void put(struct dynArrayStruct *da,int index,int val) {
assert(index<da->used &&index>=0);
da->datalindex]=val;



Binghamton CS-211

University Fall 2019

Array Bounds Checking

* Dynamic arrays can perform array bounds checking!

assert(index<da->used && index>=0);



Binghamton CS-211

University Fall 2019

Freeing a Dynamic Array

void freeDynArray(struct dynArrayStruct *da) {
free(da->data);
free(da);



Binghamton CS-211

University Fall 2019

Example Dynamic Array Use

* See useDyn.c



Binghamton CS-211

University Fall 2019

VALGRIND

* Memory Leak: Memory that has been malloc’ed, but not free’d

* Special program: “valgrind”
* monitors each malloc
* monitors each free
* Reports on mallocs that have no corresponding free when program exits
* run as: “valgrind --leak-check=full ./program argl arg2 <input.txt
» Also reports on references to free’d memory
* Also reports on array bounds violations
* (Not available on Cygwin)

31



Binghamton CS-211

University Fall 2019

Alternative: Garbage Collection

* Need to know when programmer is using memory
* Use of pointers introduce aliases
* Therefore, pointers and garbage collection don’t go together

* Periodically stop program execution for garbage collection

* “Automatically” free any memory that the program is no longer
using.
* Requires significant analysis to ensure you don’t throw away something
useful

* Adds about 10% performance penalty
* Benefit: Allows programmers to be sloppy housekeepers

32



Binghamton CS-211

University Fall 2019

More examples of malloc and free

* verilog2.c (Project 3)
* malloc is invoked to provide space for identifiers
* No need to free because we are only working with one file

* verilog3.c (Project 4)
* malloc is invoked to provide space for identifiers
* malloc is used to keep memory for each pin, net, instance, and module

« When a module is freed, free all the data for all pins, nets, instances in the
module.



Binghamton CS-211

University Fall 2019

Resources

* Programming in C, Chapter 16 (Dynamic Memory Allocation)

* Wikipedia Memory Management
https://en.wikipedia.org/wiki/Memory management

e valgrind home http://valgrind.org/

* Dynamic Memory Allocation Tutorial
http://randu.org/tutorials/c/dynamic.php

34


https://en.wikipedia.org/wiki/Memory_management
http://valgrind.org/
http://randu.org/tutorials/c/dynamic.php

