
Binghamton

University

CS-211

Fall 2019

Attendance

Please click on A if you are here:

A. I am here today.

Binghamton

University

CS-211

Fall 2019

Structures

2

Binghamton

University

CS-211

Fall 2019

Connecting Data

• Problem: Certain variables naturally fit together

• Examples:
• test1_grade, test2_grade, test3_grade

• Width, Height, Depth (of a box)

• year, month, dom (day of month)

• experiment_id, exp_temp, exp_pressure

• Pin name, module number, instance, value, direction, net

• First_Name, Last_Name, Middle_Initial, ID_Number, Age

• Artist, Album, Track, Title, Duration, Date_of_Publication

3

Binghamton

University

CS-211

Fall 2019

Connect with Arrays?

• test1_grade, test2_grade, test3_grade

float grades[3];

const char test1=0, test2=1, test3=2;

grades[test1]=90.0;

…

printf(“Test 3 grade is %f\n”,grades[test3]);

4

Binghamton

University

CS-211

Fall 2019

Connect with Arrays?

• year, month, dom

int now[3];
const char year=0, month=1, dom=2;

now[year]=currentYear();

…
if (now[month]>12) {

now[year]++;
now[month]-=12;

}

5

Binghamton

University

CS-211

Fall 2019

Connect with Arrays?

• May be acceptable if all associated variables are the same type

• How do we put different types into an array?
e.g. Pin name, module number, instance, value, direction, net

• Pin name – char * string

• Module number – int

• Instance number – int

• Value – int

• Direction – char

• net - int

6

Binghamton

University

CS-211

Fall 2019

C Structures

• Method to group variables

• Allows each variable to have its own name

• Allows each variable to have its own type

• Gives a name (and type) to the entire group

7

Binghamton

University

CS-211

Fall 2019

Example Structure

struct date {

int year; // Like 2017

int month; // Like 10 for October

int dom; // Like 23 for October 23

} ;

8

Binghamton

University

CS-211

Fall 2019

Structure Family of Data Types

• There is only one data type called “int”
• A 32 bit two’s complement binary number

• There’s only one float, char, double, etc.

• A “struct” is not a single data type, but a FAMILY of data types
• The family of all data types that are made up of multiple components

• To further qualify a structure, we must
• Define the structure – tell the compiler what the components are

• Tag our newly defined structure with a name; a “tag”

• The full data type is a combination of the keyword, struct; and the tag

Binghamton

University

CS-211

Fall 2019

Defining a Structure

struct date {

int year;

int month;

int dom;

} ;

• Creates a new derived data type called “struct date”

• Every variable with this type has sub-fields: year, month, dom

10

Structure Type

Structure Members
or Fields

Binghamton

University

CS-211

Fall 2019

Declaring a Structure

struct date now;

• Structure type must be defined previously

• Creates a variable called “now” which has sub-fields
• Year, month, and day of month (dom)

• Reserves memory for the sub-fields

• Terminology: now is an instance of the date structure

11

Structure Type Structure Instance:
Variable

Binghamton

University

CS-211

Fall 2019

Define and Declare shorthand

struct date {

int year;

int month;

int dom;

} now;

12

Structure Type

Structure Members
or Fields

Structure Instance

Binghamton

University

CS-211

Fall 2019

Error, structure “date”
is already defined!

Structures may only be defined once

Mistake
struct date {

int year;

int month;

int dom;

} now;

struct date {

int year;

int month;

int dom;

} tomorrow;

Correct
struct date {

int year;

int month;

int dom;

} now;

struct date tomorrow;

Use the "date" structure
defined previously

Binghamton

University

CS-211

Fall 2019

Structure Type

• Once a structure is defined, you can use the structure type as a data type

struct date nextDay(struct date today) {

static struct date tomorrow;

tomorrow=today;

tomorrow.dom++;

…

return tomorrow;

}

14

Binghamton

University

CS-211

Fall 2019

Structure Members

• Look like variable declarations

• May be of any type
• int, float, char, pointers, arrays, even other structures!

• May not be initialized in the structure definition

• May have the same name as real variables
int dom=21;

struct date { int year; int dom; int mon; } today ={2017,22,10};

15

Refer to as "dom"

Refer to as "today.dom"

Binghamton

University

CS-211

Fall 2019

Structure Instance

• The instance name is a variable name

• Space is reserved in memory for a structure instance
• At least enough to hold all the members of the structure

• Sometimes, extra space is added… “Padding” to make everything line up.

• Instance name must be a unique variable name
• even though fields do not have to be unique

16

Binghamton

University

CS-211

Fall 2019

Using Fields in Structure Instances

Access fields using: Instance_Name.Field_Name

struct date { int year; int month; int dom;} today;

today.year=currentYear();

today.month=currentMonth();

today.dom=currentDom();

printf(“This year is %d\n”,today.year);

17

Binghamton

University

CS-211

Fall 2019

Structure Initialization

• You may provide a comma separated list of initial values as
initialization values in a structure instance declaration.

• Members of the structure are initialized in the order in which they
appear when the structure is defined

struct date {

int year; int month; int dom;

} today={2017,11,7};

18

Binghamton

University

CS-211

Fall 2019

Anonymous Structure Types

• Type name not required, but without a type name, impossible to
create other instances of the same type

struct {

int x; int y;

} origin={0,0};

19

Binghamton

University

CS-211

Fall 2019

Structure Copy

• You may assign one structure instance to another structure instance if
they are instances of the same structure.

• This is the same as assigning each of the members.

struct date today={2017,10,23};

struct date tomorrow;

tomorrow=today; // Copy today’s date to tomorrow

• You may not compare two structure instances.
• C doesn’t know which fields should be compared or which are more

important

20

Binghamton

University

CS-211

Fall 2019

Structures as Arguments

• If you specify a structure as a parameter for a function, when that
function is invoked, the argument must be an instance of that
structure.

• C will create a NEW instance of the structure for the parameter, and
copy the argument into the parameter (field by field!)

• For big structures, this could be time consuming!

struct date today={2019,11,18};

struct date newyear={2020,1,1};

if (compDate(today,newyear)<0) printf("New year is coming!");

Binghamton

University

CS-211

Fall 2019

Example Comparison

int compDate(struct date a, struct date b) {

if (a.year < b.year) return -1; // a is smaller

if (a.year > b.year) return 1; // b is smaller

// Year matches… compare month

if (a.month < b.month) return -1;

if (a.month > b.month) return 1;

// Month matches.. compare day

if (a.dom < b.dom) return -1;

if (a.dom > b.dom) return 1;

return 0; // dates are the same

}

22

Binghamton

University

CS-211

Fall 2019

Example Comparison (version 2)

int compDate(struct date a, struct date b) {

if (a.year - b.year) return (a.year-b.year);

if (a.month - b.month) return (a.month-b.month);

return (a.dom – b.dom);

}

23

Binghamton

University

CS-211

Fall 2019

Example: days in …

int daysInYear(int y) {

return 365 + isLeapYr(y);

}
int daysInMonth(struct date d) {

static const int dim[]

={31,28,31,30,31,30,31,31,30,31,31,30}

// jn,fb,mr,ap,my,jn,jl,au,sp,oc,no,de

if(d.mon!=2) return dim[d.mon-1];

return 28+ isLeapYr(d.year);

}

int isLeapYr(int y) {

if (!y%400) return 1;

if (!y%100) return 0;

if (!y%4) return 1;

return 0;

}

Binghamton

University

CS-211

Fall 2019

Example: daysInMillenium

int daysinMillenium(struct date d) {
assert(d.year>=1900);
int dys=0;
for(int yrs=d.year;yrs>1900;yrs--) dys+=daysInYear(yrs);
while(d.month > 0) {

dys+=daysInMonth(d);
d.month--;

}
return dys+d.dom;

}

Binghamton

University

CS-211

Fall 2019

Big Structures

struct song {

char artist[100];

char album[100];

int track;

char title[100];

float duration;

struct date publication;

} dearPrudence={“Beatles”,”White Album”,2,

”Dear Prudence”, 380.6,{1968,11,22}};

26

Binghamton

University

CS-211

Fall 2019

Big Structures as Arguments

boolean isGoldie(struct song s) {

if (s.published.year < 2006) { return true; }

return false;

}

• Copies entire “song” structure to activation record… 308 bytes!

27

Binghamton

University

CS-211

Fall 2019

Structures as Return Types

• A C function may return a structure.

• If you assign the result of a function to a structure, the fields will be
copied into the instance of the structure you provide as the target to
the assignment.

• Allows return of multiple values!

• Allows function to build a structure in a local variable and return it!

• Compare to arrays – no array copy is performed on return of address

Binghamton

University

CS-211

Fall 2019

Example of a structure return type

struct date newDate(int year,int month,int dom) {

struct date n;

n.year=year;

n.month=month;

n.dom=dom;

reutrn n;

}

…

struct date xmas=newDate(2019,12,25);

Assumes "struct date" already defined

Local instance "n"

"n" stays around just long enough
for C to copy n.year to xmas.year,

n.month to xmas.month,
and n.dom to xmas.dom

Binghamton

University

CS-211

Fall 2019

C Pitfall… Cannot return local array!

int * sequence(int s,int n) {

int nums[n]; // array of integers with n elements

for(int i=0;i<n);i++) nums[i]=s+i;

return nums;

}

…

int seq[5]=sequence(10,5);

Local instance "nums"

Returns &nums[0]
Then gives back the memory for nums!

Allocates space for 5 ints, but
then replace the address of that memory

with the address of nums
which is NO LONGER VALID!

Binghamton

University

CS-211

Fall 2019

Alternatives for Returning Arrays

• Make the array static
• but then someone else might invoke the function and change it

• Make the return array an argument
• Require your use to give you the space to write to

• Makes your user responsible for providing (and cleaning up) the space

• Dynamically allocate space for the array (coming soon)
• Makes your user responsible for cleaning up the space

Binghamton

University

CS-211

Fall 2019

Pointers to Structures

• It is so useful to pass structures by reference, we almost always do so

• C programmers got tired of coding: (*todayRef).year

• Pointer to structure shorthand…

(*todayRef).year
is the same as….

todayRef->year

Binghamton

University

CS-211

Fall 2019

C Pitfall – Returning *local structure

struct date * newDate(int year,int month,int dom) {

struct date n;

n.year=year;

n.month=month;

n.dom=dom;

return &n;

}

…

struct date *today=newDate(2012,11,18);

Local instance "n"

Returns &n
Then gives back the memory for n!

today ->n
which is NO LONGER VALID!

Binghamton

University

CS-211

Fall 2019

Resources

• Programming in C, Chapter 7

• Wikipedia Record
https://en.wikipedia.org/wiki/Record_(computer_science)

• Structure Tutorial:
http://www.tutorialspoint.com/cprogramming/c_structures.htm

34

https://en.wikipedia.org/wiki/Record_(computer_science)
http://www.tutorialspoint.com/cprogramming/c_structures.htm

