Binghamton CS-211

University Fall 2019

1> 1Clicker Attendance

Please click on A if you are here:

A. | am here today.

Fall 2019

o
S
g
S -
= W
an 7
=
m D

Binghamton CS-211

University Fall 2019

What is a “string™?

* A “string” is just a vector of ASCII characters
* Followed by a “null terminator” — a byte with the value 0 or 0x00
e Warning: blanks in ASCIl have a non-zero value (0x20)

char str[14]="This a string’;

=17 1.7 2°2 2.0) (4 2__)) (L 2_0 240 2.7 J2°) 2 .72)2 2
{‘T,’h’,’1",’s’, 7 57, 7 4 %s% 't e it 'n’ Jg’, x00}

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Binghamton CS-211

University Fall 2019

The “null terminator”

* A null terminator is a single byte with the value 0b0O0000000

e A null terminator is NOT a null address... not NULL!
0b00000000 00000000 00000000 00000000

* A null terminator is NOT an integer O
0b00000000_00000000_00000000 00000000

* When we assign a word 0 to a char O, the left bits are truncated
* So we can assign 0 to a char to get a null terminator

* When we compare a null-terminator to a word 0, the null terminator is
extended to word length

* So we can compare a byte to O to see if it is a null terminator
* To avoid confusion, | use 0x00 as a null terminator (0bO0000000)
* You will also see \O’ — the ASCI| escaped null terminator (0b00000000)

Binghamton CS-211

University Fall 2019

Using Pointer Notation

* We already learned that C lets us use pointer notation for arrays
int * c¢3; // is very similar to int c3[];

* When dealing with strings, we almost always use pointer notation
* Length is not important BECAUSE we have a null terminator

char * string; // is very similar to char string[];

Binghamton CS-211

University Fall 2019

Pointer notation and Memory

* Pointer notation does NOT reserve space for a string!
char * string;
string[0]=0x00; // results in SEGMENTATION VIOLATION!
* A literal string DOES reserve space for the literal string
char * string="This is a test”; // string points to literal
string[0]="X"; // Modify the literal in memory”

// (May cause segmentation violation!)
printf(“String is: %s\n”,string); // String is: Xhis is a test

CS-211
Fall 2019

Binghamton

University

printf substitutes string for %s

char str[14]="This a string’;
printf(“Variable str contains [%s| and no more\n”,str);

Variable str contains |This a string| and no more

* %s replaced by characters...
e starting at pointer-to-character argument
« up to a null terminator

Binghamton CS-211

University Fall 2019

Empty String

char str[14]="This a string’;
str[0]=x00;
printf(“Variable str contains [%s| and no more\n”,str);

Variable str contains || and no more

0 1 2 3 4 5 6 7 8 9 10 11 12 13

x00 X68 xX69 x73 x20 x61 x20 x73 x74 xX72 X69 x6e X67 x00

Binghamton CS-211

University Fall 2019

Standard Library String Functions

#include <string.h>

char str[18]="This a string’;

printf(“Size of str buffer: %d\n",sizeof(str));
printf(“Length of str string: %d\n”,strlen(str));
Size of str buffer: 18

Length of str string: 13

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T h i S a S t r i n g \@ \0 \&@ \0 \o
x54 x68 x69 x73 x20 x61 x20 x73 x74 x72 x69 xbe x67 x00 x00 x00 x00 x00

Binghamton CS-211

University Fall 2019

> [Clicker Question

* \What does this line of C code do?

string[strlen(string)]=0x00;

. Adds null terminator to the end of string
Wastes time and does nothing

Shortens the length of string by 1 character
. Puts a second null terminator after the first
None of the above

mo o>

Binghamton CS-211

University Fall 2019

strlen(char * str);

e Counts the number of characters up to (but not including) the null
terminator of the argument.

* Because we start indexes at zero:

str[strlen(str)]==0x00 // ALWAYS TRUE!

char empty[20]=""
printf(“"Length of empty: %d\n”,strlen(empty));
Length of empty: O

11

Binghamton CS-211

University Fall 2019

strcpy(char * to,char * from)

* Copies “from” string to “to” string

* ASSUMES “to” is large enough to hold strlen(from)+1 characters
* Including from’s null terminator

char buf[100]="0ld string";

char new[20]="Newer string’;

strcpy(buf,new);

printf(*Variable buf contains |%s| and no more\n”,buf);

Variable buf contains |[Newer string| and no more

12

Binghamton CS-211

University Fall 2019

strcat(char start|],char tail[])

I”

e Copies “tail” string at the end of “start” string

 ASSUMES “start” is large enough to hold both “start” and “tail”
* Including tail’s null terminator

char start[100]="Beginning “;

char end[20]="0of a test.”;

strcat(start,end);

printf(“Variable start contains |%s| and no more\n”,start);

Variable start contains |Beginning of a test.| and no more

13

Binghamton CS-211

University Fall 2019

strncat(char start| |,char tall[],int n)

* Copies up to n bytes of “tail” string at the end of “start” string
* |If tail’s null terminator is not copied, result is not null terminated!

 ASSUMES “start” is big enough to hold both start and n bytes of tail

e Safer than strcat if used correctly

char start[100]="Beginning “; // Note... short initialization!
char end[20]="of a test.”;

strncat(start,end,0);

printf(“*Variable start contains |%s| and no more\n”,start);

Variable start contains |Beginning of a t| and no more

14

Binghamton CS-211

University Fall 2019

To be totally safe....

int byteslLeft=sizeof(start)-strlen(start)-1;
strncat(start,end,byteslLeft);
start[sizeof(start)-1]=0x00:;

Binghamton CS-211

University Fall 2019

strcmp(char * a, char * b)

e Compares the string in “a” to the string in “b”
* |f a<b, returns a number less than zero
* |If a==b, returns zero
 If a>b, returns a number greater than zero

e Cannot compare strings with ==, <, >, <=, etc. operators!
e Can compare CHARACTERS with ==, <, ...

if (O==strcmp(name,”Tom”)) printf("Hi Tom...”);

16

Binghamton CS-211

University Fall 2019

strncmp(char *a, char *b,int n)

* Checks to see if a’s prefix matches b’s prefix for up to n characters
* |f a<b, returns a number less than zero
* |f a==b, returns zero
 If a>b, returns a number greater than zero

if (0==strncmp(name,”Tom”,3))
printf(“Name %s starts with Tom...”,name);

Name Tompkins County starts with Tom

17

CS-211
Fall 2019

Binghamton

University

Resources

* Programming in C, Chapter 6 (Arrays)
* Programming in C, Chapter 9 (Strings)

* Wikipedia C String Handling
https://en.wikipedia.org/wiki/C_string_handling

* C String Tutorial :
http://www.tutorialspoint.com/cprogramming/c_strings.htm

18

https://en.wikipedia.org/wiki/C_string_handling
http://www.tutorialspoint.com/cprogramming/c_strings.htm

