
Binghamton

University

CS-211

Fall 2019

Attendance

Please click on A if you are here:

A. I am here today.

Binghamton

University

CS-211

Fall 2019

Strings in C

2

Binghamton

University

CS-211

Fall 2019

What is a “string”?

• A “string” is just a vector of ASCII characters
• Followed by a “null terminator” – a byte with the value 0 or 0x00

• Warning: blanks in ASCII have a non-zero value (0x20)

char str[14]=“This a string”;

3

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

ASCII T h i s a s t r i n g

Hex x54 x68 x69 x73 x20 x61 x20 x73 x74 x72 x69 x6e x67 x00

{‘T’, ’h’, ’i’, ’s’, ’ ‘, ’a’, ’ ‘, ’s’, ’t’ ,’r’ ,’i’ ,’n’ ,’g’, x00}

Binghamton

University

CS-211

Fall 2019

The “null terminator”

• A null terminator is a single byte with the value 0b00000000
• A null terminator is NOT a null address… not NULL!

0b00000000_00000000_00000000_00000000
• A null terminator is NOT an integer 0

0b00000000_00000000_00000000_00000000

• When we assign a word 0 to a char 0, the left bits are truncated
• So we can assign 0 to a char to get a null terminator

• When we compare a null-terminator to a word 0, the null terminator is
extended to word length

• So we can compare a byte to 0 to see if it is a null terminator

• To avoid confusion, I use 0x00 as a null terminator (0b00000000)
• You will also see ‘\0’ – the ASCII escaped null terminator (0b00000000)

Binghamton

University

CS-211

Fall 2019

Using Pointer Notation

• We already learned that C lets us use pointer notation for arrays

int * c3; // is very similar to int c3[];

• When dealing with strings, we almost always use pointer notation
• Length is not important BECAUSE we have a null terminator

char * string; // is very similar to char string[];

Binghamton

University

CS-211

Fall 2019

Pointer notation and Memory

• Pointer notation does NOT reserve space for a string!

char * string;

string[0]=0x00; // results in SEGMENTATION VIOLATION!

• A literal string DOES reserve space for the literal string

char * string=“This is a test”; // string points to literal

string[0]=‘X’; // Modify the literal in memory*

// (May cause segmentation violation!)

printf(“String is: %s\n”,string); // String is: Xhis is a test

Binghamton

University

CS-211

Fall 2019

printf substitutes string for %s

char str[14]=“This a string”;

printf(“Variable str contains |%s| and no more\n”,str);

Variable str contains |This a string| and no more

• %s replaced by characters…
• starting at pointer-to-character argument

• up to a null terminator

7

Binghamton

University

CS-211

Fall 2019

Empty String

char str[14]=“This a string”;

str[0]=x00;

printf(“Variable str contains |%s| and no more\n”,str);

Variable str contains || and no more

8

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

ASCII h i s a s t r i n g

Hex x00 x68 x69 x73 x20 x61 x20 x73 x74 x72 x69 x6e x67 x00

Binghamton

University

CS-211

Fall 2019

Standard Library String Functions

#include <string.h>

char str[18]=“This a string”;

printf(“Size of str buffer: %d\n”,sizeof(str));

printf(“Length of str string: %d\n”,strlen(str));

Size of str buffer: 18

Length of str string: 13

9

Indx 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

char T h i s a s t r i n g \∅ \∅ \∅ \∅ \∅

Hex x54 x68 x69 x73 x20 x61 x20 x73 x74 x72 x69 x6e x67 x00 x00 x00 x00 x00

Binghamton

University

CS-211

Fall 2019

Question

• What does this line of C code do?

A. Adds null terminator to the end of string

B. Wastes time and does nothing

C. Shortens the length of string by 1 character

D. Puts a second null terminator after the first

E. None of the above

string[strlen(string)]=0x00;

Binghamton

University

CS-211

Fall 2019

strlen(char * str);

• Counts the number of characters up to (but not including) the null
terminator of the argument.

• Because we start indexes at zero:
str[strlen(str)]==0x00 // ALWAYS TRUE!

char empty[20]=“”;
printf(“Length of empty: %d\n”,strlen(empty));
Length of empty: 0

11

Binghamton

University

CS-211

Fall 2019

strcpy(char * to,char * from)

• Copies “from” string to “to” string

• ASSUMES “to” is large enough to hold strlen(from)+1 characters
• Including from’s null terminator

char buf[100]=“Old string“;

char new[20]=“Newer string”;

strcpy(buf,new);

printf(“Variable buf contains |%s| and no more\n”,buf);

Variable buf contains |Newer string| and no more

12

Binghamton

University

CS-211

Fall 2019

strcat(char start[],char tail[])

• Copies “tail” string at the end of “start” string

• ASSUMES “start” is large enough to hold both “start” and “tail”
• Including tail’s null terminator

char start[100]=“Beginning “;

char end[20]=“of a test.”;

strcat(start,end);

printf(“Variable start contains |%s| and no more\n”,start);

Variable start contains |Beginning of a test.| and no more

13

Binghamton

University

CS-211

Fall 2019

strncat(char start[],char tail[],int n)

• Copies up to n bytes of “tail” string at the end of “start” string
• If tail’s null terminator is not copied, result is not null terminated!

• ASSUMES “start” is big enough to hold both start and n bytes of tail

• Safer than strcat if used correctly

char start[100]=“Beginning “; // Note… short initialization!

char end[20]=“of a test.”;

strncat(start,end,6);

printf(“Variable start contains |%s| and no more\n”,start);

Variable start contains |Beginning of a t| and no more
14

Binghamton

University

CS-211

Fall 2019

To be totally safe….

int bytesLeft=sizeof(start)-strlen(start)-1;

strncat(start,end,bytesLeft);

start[sizeof(start)-1]=0x00;

15

Binghamton

University

CS-211

Fall 2019

strcmp(char * a, char * b)

• Compares the string in “a” to the string in “b”
• If a<b, returns a number less than zero

• If a==b, returns zero

• If a>b, returns a number greater than zero

• Cannot compare strings with ==, <, >, <=, etc. operators!
• Can compare CHARACTERS with ==, <, …

if (0==strcmp(name,”Tom”)) printf(“Hi Tom…”);

16

Binghamton

University

CS-211

Fall 2019

strncmp(char *a, char *b,int n)

• Checks to see if a’s prefix matches b’s prefix for up to n characters
• If a<b, returns a number less than zero

• If a==b, returns zero

• If a>b, returns a number greater than zero

if (0==strncmp(name,”Tom”,3))

printf(“Name %s starts with Tom…”,name);

Name Tompkins County starts with Tom

17

Binghamton

University

CS-211

Fall 2019

Resources

• Programming in C, Chapter 6 (Arrays)

• Programming in C, Chapter 9 (Strings)

• Wikipedia C String Handling
https://en.wikipedia.org/wiki/C_string_handling

• C String Tutorial :
http://www.tutorialspoint.com/cprogramming/c_strings.htm

18

https://en.wikipedia.org/wiki/C_string_handling
http://www.tutorialspoint.com/cprogramming/c_strings.htm

