Binghamton CS-211

University Fall 2019

1> 1Clicker Attendance

Please click on A if you are here:

A. | am here today.

Binghamton CS-211

University Fall 2019

Pointers

Binghamton CS-211

University Fall 2019

Memory

* The act of keeping track of something
over time

* “Remembering” is the concept of
storing information

* A memory is no good unless you can
retrieve that information

* In a computer, we remember information by writing bits (1/0) to
memory

* We retrieve information by reading bits from memory

Binghamton CS-211

University Fall 2019

Memory Is Different from Disk Storage

* All values in memory are forgotten when power is turned off
* Memory is really “short-term” memory

* Reading and Writing memory is much faster than reading or writing
disk

* Memory is organized differently than disk

Binghamton CS-211

University Fall 2019

Computer Memory Organization

* Computers read and write memory in 1 byte (8 bit) chunks
* Think of memory as a big C vector of chars:

char memory[2142240768];

* Like a vector, if we know the index of a byte of memory, we can either
read or write to that byte:

memory[1684501289] = ‘A’;
printf("We stored %c\n”",memory[1684501289));

Binghamton CS-211

University Fall 2019

What Is a pointer?

* A 64 bit unsigned integer (a special kind of "unsigned long")
* Index into the “memory” vector

e Says “I'm not important... what’s important is over there...”
* Points AT or TO the real data in memory

CS-211
Fall 2019

Binghamton

University

Memory

* Vector of bytes

* Each byte has a value

* Each byte has an “index” or “address”

e Usually, the address is specified in hexadecimal

O0x00000 0000 g 0x0000 0001 g 0OxO000 0002 g OxO0O00 0003

04 ac xo2 || X906 x00 30

7

Binghamton CS-211

University Fall 2019

Cheap Memory

* Between Moore’s Law and brilliant OS parlor tricks, “Virtual Memory”
is VERY cheap!

* Memory size depends on the size of the address

Address Size Number of Bytes addressable

2 bytes (16 bits) 216 = 64K = 65,376
4 bytes (32 bits) 232=4G=4,284,481,536
8 bytes (64 bits) 264 = 16EiB >1.8 x 101°

Binghamton CS-211

University Fall 2019

C Variables

* A variable is a named piece of data

 Variables in C have...
* A name (specified by the programmer)
* A value (may be unassigned/unknown)
* Alocation in memory (determined by the compiler)
* Atype (size and interpretation)

 Variables must be declared before they are used!

Binghamton CS-211
University Fall 2019

Variable Concept

Memory

PPPP PPPP PP PPP? PP PP PP PP

22722 2272°? PPPP PPPP PP PPP? PP PP PP PP

First_Initial

Binghamton CS-211

University Fall 2019

Variables In Memory

* Every variable starts at a specific location (address) in memory
* Type tells how many bytes in memory and how to interpret

First_Initial

x0034 ffe0 | x004d 18c4 W

00 [X04 [X1C 1%02 %54 .| X00 [X00 100 [x39 | ... |96 [x00 1x30 x04

11

Binghamton CS-211

University Fall 2019

Variable Address/Location

 Where is the value for the variable in memory?
* The address of “First_Initial” is x0034ffe0, which points to 0x54 =T’

First_Initial

x0034 ffe0 | x004d 18c4 W

00 [x04 [x1C 1%02 [x54 | | [X00 [x00 1x00 [x39 | ... |96 [x00 1x30 x04

12

Binghamton CS-211

University Fall 2019

Variable Address/Location

 Where is the value for the variable in memory?

* The address of “age” is x004d18c4, which points to the integer (4
byte) value 0x00000039=57

First_Initial

x0034 ffe0 | x004d 18c4 W

X0 [x04 [x1C 1%02 [x54 | | [X00 [x00 1x00 [x39 | ... |96 [x00 1x30 x04

13

Binghamton CS-211

University Fall 2019

Address Of (&) operator

* An ampersand (&) in front of a variable indicates “address of”
char First_Initial="T"

Int age=57/;
printf(“First_Initial is in memory at %p\n”,&First_Initial);

First_Initial is in memory at 0x34ffe0

age

mm -nm-- x00 [x00 00 [x39 | [.. [.. [x96 [x00 [x30 [x08_
x0034 ffeO x004d 18c4 [l xffff fffd gl xffff fffe @ xffff ffff

Binghamton CS-211

University Fall 2019

Pointers in C

* Pointers are a special family of data types
* Avariable may be declared as a pointer
 Like any other variable, space is reserved in memory for the value

* The size of a pointer is the size of an address (8 bytes, sometimes 4)
* The value of a pointer is an address — an index into memory

* The type of a pointer includes the type of value it is pointing to!
e pointer to character
* pointer to integer

pointer to float

e pointer to an array of 14 characters

15

Binghamton CS-211

University Fall 2019

Declaring a Pointer

e Same as normal variable but need asterisk (*) : “pointer to”
char First_lInitial="T"; char * fi_ptr; // pointer to char
fi_ptr=&First_Initial; // must be the address of char!
printf(“Value of fi_ptr at %p is %p\n”,&fi_ptr,fi_ptr);
Value of fi_ptr at 0x4d18c4 is 0x34ffe0

mm --m- xoo 34 [t [xe0 |l 1]s6 00 | %30 [04
x0034 ffeO x004d 18c4 [l xffff fffd gl xffff fffe @ xffff ffff

CS-211
Fall 2019

Binghamton

University

Pointers as References

* A pointer has a value... an address in memory
* A pointer points to another value... the data at that address

* Because we know what type the pointer is pointing to, we know how
long the data at that address should be and how to interpret that

First_Initial

0x0034ffe0

x54 or 'T’

17

Binghamton CS-211

University Fall 2019

Getting the value at a Pointer

 Same as normal variable but need asterisk (*) : “value at”

char First_Initial="T’

char * fi_ptr=&First_ In|t|aI /| pointer to char
printf(“fi_ptr w/ value %p points at %c\n”, fi_ptr,(*fi_ptr));
fi_ptr w/ value 0x34ffe0 points at T

See also printMem.c

mm --m-- x00 |34 [xtt [xe0 | [.. [.. [x96 [x00 [x30 [x08_
x0034 ffeO x004d 18c4 [l xffff fffd gl xffff fffe @ xffff ffff

Binghamton CS-211

University Fall 2019

Terminology

fi_ptr references First_|Initial
char First_Initial="T’

char * fi_ptr=&First_Initial; // pointer to char
printf(“fi_ptr points at %c\n”, (*fi_ptr));

fi_ptr points at T
*fi_ptr dereferences fi_ptr

mm --m-- x00 |34 [xtt [xe0 | [.. [.. [x96 [x00 [x30 [x08_
x0034 ffeO x004d 18c4 [l xffff fffd gl xffff fffe @ xffff ffff

Binghamton CS-211

University Fall 2019

Abuse of Symbols

Ampersand (&) Asterix (*)
X &y // Bit-wise AND X *y // multiplication
X && y // Logical AND int * X // pointer to

&x // Address Of (*x) // value at

20

Binghamton CS-211

University Fall 2019

Pointers as Aliases

char First_Initial="T";
char * fi_ptr=&First_Initial;
(*fi_ptr)="A’; // Alias for First_Initial

printf(“First Initial: %c\n”,First_Initial);
First_Initial

First Initial: A

21

Binghamton CS-211

University Fall 2019

Dereferenced Assignments

* The left hand side of an assignment must be a location in memory
that we can write to.

* Up to now, the left hand side of an assignment has always been a
variable: int x; x=17;
* The compiler knows where "x" is in memory, so this is legal

* When we added arrays, you could assign to an ELEMENT of an array:
float gpas[10]; gpa[7]=3.8;
* The compiler knows where "gpa[7]" is in memory, so this is legal

* A dereferenced pointer points to a location in memory
* The compiler knows where (* fi_ptr) is in memory, so this is legal

Binghamton CS-211

University Fall 2019

Using NULL

* “NULL” is a special address whose value is 0x0000 0000 0000 0000.

* Beginning of Memory “belongs” to the operating system
* General programs can read at O, but cannot write at 0

* Therefore, we use NULL to indicate “pointer to nothing”
 Or “pointer that we haven’t set yet”, or "invalid value for a pointer”

int *p=NULL; // p is a pointer to nothing (for now)

p=&age; // Now p is a pointer to an integer

23

Binghamton CS-211

University Fall 2019

C Gotcha: “Dereferencing a Null Pointer”

int *“p=NULL; // p is a pointer to nothing (for now)
int x=foo();

if (x>0){ p=&x;}

(*p) = 5;

Segmentation Violation when x<=0

Binghamton CS-211

University Fall 2019

Pointers point to Types

* Int *X; // x is a pointer to an integer
* &z — Type is: pointer to <type of z>

* (*myptr) — Type is: type which myptr is pointing to
e.g. int *myptr=&area; (*myptr)="‘a’;

assigning char to int
ASCII value of ‘@’ is Ox61

area i1s now 0x00000061
or 97

Binghamton CS-211

University Fall 2019

The Power of Pointers

* Pointers are a Reference to what they are pointing at

* Rather than passing an entire <type> element, we can pass a pointer
to that type. (Pointers are 8 bytes long.)
e Rather than passing an int, pass a pointer to an int
* Rather than passing a struct, pass a pointer to that struct
e Rather than passing an array, pass a pointer to that array

* If we pass a reference, then we can modify what we are pointing to,
EVEN IF THE REFERENCE ITSELF IS A COPY!

Binghamton CS-211

Fall 2019

University

> [Clicker Question

Have we seen & used to create a reference argument already?
If so, in what context?

A. In a printf library call

B. In an if statement to connect two logic conditions
C. In a scanf library call

D. We've never used & in this class to create a reference

Binghamton CS-211

University Fall 2019

Example of Pass by Reference

int counter=0; int counter=0;
void incr(int x) { void incr(int *x) {
X=X+ 1; (*x) = (*x) + 1;
} }
incr(counter); incr(&counter);
printf(“counter=%d\n”,counter); printf(“counter=%d\n”,counter);

counter=0 counter=1

Binghamton CS-211

University Fall 2019

Another example of pass by reference

int vO;

printf("Enter the initial velocity :>");
scanf("%d",&v0);

* Argument expression &vO is evaluated to the address of vO

* If scanf parameter is "int * intPointer"”, the VALUE of intPointer is the
address of vO

* scanf reads a number from the terminal, and writes it to (*intPointer),
which is an alias for vO

Binghamton CS-211
Fall 2019

University

Resources

* Programming in C, Chapter 10

* Wikepedia Pointers :
https://en.wikipedia.org/wiki/Pointer (computer_programming)

* C Pointer Tutorial :
http://www.tutorialspoint.com/cprogramming/c_pointers.htm

30

https://en.wikipedia.org/wiki/Pointer_(computer_programming)
http://www.tutorialspoint.com/cprogramming/c_pointers.htm

