
Binghamton

University

CS-211

Fall 2019

Attendance

Please click on A if you are here:

A. I am here today.

Binghamton

University

CS-211

Fall 2019

Pointers

2

Binghamton

University

CS-211

Fall 2019

Memory

• The act of keeping track of something
over time

• “Remembering” is the concept of
storing information

• A memory is no good unless you can
retrieve that information

• In a computer, we remember information by writing bits (1/0) to
memory

• We retrieve information by reading bits from memory

Binghamton

University

CS-211

Fall 2019

Memory is Different from Disk Storage

• All values in memory are forgotten when power is turned off
• Memory is really “short-term” memory

• Reading and Writing memory is much faster than reading or writing
disk

• Memory is organized differently than disk

Binghamton

University

CS-211

Fall 2019

Computer Memory Organization

• Computers read and write memory in 1 byte (8 bit) chunks

• Think of memory as a big C vector of chars:

char memory[2142240768];

• Like a vector, if we know the index of a byte of memory, we can either
read or write to that byte:

memory[1684501289] = ‘A’;
printf(“We stored %c\n”,memory[1684501289]);

Binghamton

University

CS-211

Fall 2019

What is a pointer?

• A 64 bit unsigned integer (a special kind of "unsigned long")

• Index into the “memory” vector

• Says “I’m not important… what’s important is over there…”

• Points AT or TO the real data in memory

6

Binghamton

University

CS-211

Fall 2019

Memory

• Vector of bytes

• Each byte has a value

• Each byte has an “index” or “address”

• Usually, the address is specified in hexadecimal

7

x00 x04 x1C x02 … … … … x96 x00 x30 x04

0x00000 0000 0x0000 0001 0x0000 0002 0x0000 0003 xffff ffffxffff fffexffff fffd

Binghamton

University

CS-211

Fall 2019

Cheap Memory

• Between Moore’s Law and brilliant OS parlor tricks, “Virtual Memory”
is VERY cheap!

• Memory size depends on the size of the address

Address Size Number of Bytes addressable

2 bytes (16 bits) 216 = 64K = 65,376

4 bytes (32 bits) 232 = 4G = 4,284,481,536

8 bytes (64 bits) 264 = 16EiB >1.8 x 1019

Binghamton

University

CS-211

Fall 2019

C Variables

• A variable is a named piece of data

• Variables in C have…
• A name (specified by the programmer)

• A value (may be unassigned/unknown)

• A location in memory (determined by the compiler)

• A type (size and interpretation)

• Variables must be declared before they are used!

9

Binghamton

University

CS-211

Fall 2019

Variable Concept

10

Memory

???? ???? ???? ???? ???? ???? ???? ????

Age

???? ????

First_Initial

???? ???? ???? ???? ???? ???? ???? ????

gpa

Binghamton

University

CS-211

Fall 2019

age

Variables In Memory

• Every variable starts at a specific location (address) in memory

• Type tells how many bytes in memory and how to interpret

11

x00 x04 x1C x02 … … x54 … … x00 x00 x00 x39 … … … x96 x00 x30 x04

0 1 2 3 xffff ffffxffff fffexffff fffd

First_Initial

x0034 ffe0 x004d 18c4

Binghamton

University

CS-211

Fall 2019

age

Variable Address/Location

• Where is the value for the variable in memory?

• The address of “First_Initial” is x0034ffe0, which points to 0x54 =‘T’

12

x00 x04 x1C x02 … … x54 x00 x00 x00 x39 … … x96 x00 x30 x04

0 1 2 3 xffff ffffxffff fffexffff fffd

First_Initial

x0034 ffe0 x004d 18c4

Binghamton

University

CS-211

Fall 2019

age

Variable Address/Location

• Where is the value for the variable in memory?

• The address of “age” is x004d18c4, which points to the integer (4
byte) value 0x00000039=57

13

x00 x04 x1C x02 … … x54 x00 x00 x00 x39 … … x96 x00 x30 x04

0 1 2 3 xffff ffffxffff fffexffff fffd

First_Initial

x0034 ffe0 x004d 18c4

Binghamton

University

CS-211

Fall 2019

age

Address Of (&) operator

• An ampersand (&) in front of a variable indicates “address of”

char First_Initial=‘T’;

int age=57;

printf(“First_Initial is in memory at %p\n”,&First_Initial);

First_Initial is in memory at 0x34ffe0

14

x00 x04 x1C x02 … … x54 x00 x00 x00 x39 … … x96 x00 x30 x04

0 1 2 3 xffff ffffxffff fffexffff fffd

First_Initial

x0034 ffe0 x004d 18c4

Binghamton

University

CS-211

Fall 2019

Pointers in C

• Pointers are a special family of data types
• A variable may be declared as a pointer
• Like any other variable, space is reserved in memory for the value

• The size of a pointer is the size of an address (8 bytes, sometimes 4)

• The value of a pointer is an address – an index into memory

• The type of a pointer includes the type of value it is pointing to!
• pointer to character
• pointer to integer
• pointer to float
• pointer to an array of 14 characters
• …

15

Binghamton

University

CS-211

Fall 2019

fi_ptr

Declaring a Pointer

• Same as normal variable but need asterisk (*) : “pointer to”

char First_Initial=‘T’; char * fi_ptr; // pointer to char

fi_ptr=&First_Initial; // must be the address of char!

printf(“Value of fi_ptr at %p is %p\n”,&fi_ptr,fi_ptr);

Value of fi_ptr at 0x4d18c4 is 0x34ffe0

16

x00 x04 x1C x02 … … x54 x00 x34 xff xe0 … … x96 x00 x30 x04

0 1 2 3 xffff ffffxffff fffexffff fffd

First_Initial

x0034 ffe0 x004d 18c4

Binghamton

University

CS-211

Fall 2019

Pointers as References

• A pointer has a value… an address in memory

• A pointer points to another value… the data at that address

• Because we know what type the pointer is pointing to, we know how
long the data at that address should be and how to interpret that
value

17

x54 or 'T'

0x0034ffe0

First_Initialfi_ptr

Binghamton

University

CS-211

Fall 2019

fi_ptr

Getting the value at a Pointer

• Same as normal variable but need asterisk (*) : “value at”

char First_Initial=‘T’;

char * fi_ptr=&First_Initial; // pointer to char

printf(“fi_ptr w/ value %p points at %c\n”, fi_ptr,(*fi_ptr));

fi_ptr w/ value 0x34ffe0 points at T

18

x00 x04 x1C x02 … … x54 x00 x34 xff xe0 … … x96 x00 x30 x04

0 1 2 3 xffff ffffxffff fffexffff fffd

First_Initial

x0034 ffe0 x004d 18c4

See also printMem.c

Binghamton

University

CS-211

Fall 2019

fi_ptr

Terminology

char First_Initial=‘T’;

char * fi_ptr=&First_Initial; // pointer to char

printf(“fi_ptr points at %c\n”, (*fi_ptr));

fi_ptr points at T

19

x00 x04 x1C x02 … … x54 x00 x34 xff xe0 … … x96 x00 x30 x04

0 1 2 3 xffff ffffxffff fffexffff fffd

First_Initial

x0034 ffe0 x004d 18c4

fi_ptr references First_Initial

*fi_ptr dereferences fi_ptr

Binghamton

University

CS-211

Fall 2019

Abuse of Symbols

Ampersand (&)

x & y // Bit-wise AND

x && y // Logical AND

&x // Address Of

Asterix (*)

x * y // multiplication

int * x // pointer to

(*x) // value at

20

Binghamton

University

CS-211

Fall 2019

Pointers as Aliases

char First_Initial=‘T’;

char * fi_ptr=&First_Initial;

(*fi_ptr)=‘A’; // Alias for First_Initial

printf(“First Initial: %c\n”,First_Initial);

First Initial: A

21

x54

First_Initial
*fi_ptr

x41

Binghamton

University

CS-211

Fall 2019

Dereferenced Assignments

• The left hand side of an assignment must be a location in memory
that we can write to.

• Up to now, the left hand side of an assignment has always been a
variable: int x; x=17;

• The compiler knows where "x" is in memory, so this is legal

• When we added arrays, you could assign to an ELEMENT of an array:
float gpas[10]; gpa[7]=3.8;

• The compiler knows where "gpa[7]" is in memory, so this is legal

• A dereferenced pointer points to a location in memory
• The compiler knows where (* fi_ptr) is in memory, so this is legal

Binghamton

University

CS-211

Fall 2019

Using NULL

• “NULL” is a special address whose value is 0x0000 0000 0000 0000.

• Beginning of Memory “belongs” to the operating system
• General programs can read at 0, but cannot write at 0

• Therefore, we use NULL to indicate “pointer to nothing”
• Or “pointer that we haven’t set yet”, or "invalid value for a pointer"

int *p=NULL; // p is a pointer to nothing (for now)

…

p=&age; // Now p is a pointer to an integer

23

Binghamton

University

CS-211

Fall 2019

C Gotcha: “Dereferencing a Null Pointer”

int *p=NULL; // p is a pointer to nothing (for now)

int x=foo();

if (x>0) { p=&x; }

(*p) = 5;

Segmentation Violation when x<=0

Binghamton

University

CS-211

Fall 2019

Pointers point to Types

• int *x; // x is a pointer to an integer

• &z – Type is: pointer to <type of z>

• (*myptr) – Type is: type which myptr is pointing to
e.g. int *myptr=&area; (*myptr)=‘a’;

assigning char to int
ASCII value of ‘a’ is 0x61
area is now 0x00000061

or 97

Binghamton

University

CS-211

Fall 2019

The Power of Pointers

• Pointers are a Reference to what they are pointing at

• Rather than passing an entire <type> element, we can pass a pointer
to that type. (Pointers are 8 bytes long.)

• Rather than passing an int, pass a pointer to an int

• Rather than passing a struct, pass a pointer to that struct

• Rather than passing an array, pass a pointer to that array

• If we pass a reference, then we can modify what we are pointing to,
EVEN IF THE REFERENCE ITSELF IS A COPY!

Binghamton

University

CS-211

Fall 2019

Question

Have we seen & used to create a reference argument already?
If so, in what context?

A. In a printf library call

B. In an if statement to connect two logic conditions

C. In a scanf library call

D. We've never used & in this class to create a reference

Binghamton

University

CS-211

Fall 2019

Example of Pass by Reference

int counter=0;

void incr(int x) {

x = x + 1;

}

incr(counter);

printf(“counter=%d\n”,counter);

counter=0

int counter=0;

void incr(int *x) {

(*x) = (*x) + 1;

}

incr(&counter);

printf(“counter=%d\n”,counter);

counter=1

Binghamton

University

CS-211

Fall 2019

Another example of pass by reference

int v0;

printf("Enter the initial velocity :> ");

scanf("%d",&v0);

• Argument expression &v0 is evaluated to the address of v0

• If scanf parameter is "int * intPointer", the VALUE of intPointer is the
address of v0

• scanf reads a number from the terminal, and writes it to (*intPointer),
which is an alias for v0

Binghamton

University

CS-211

Fall 2019

Resources

• Programming in C, Chapter 10

• Wikepedia Pointers :
https://en.wikipedia.org/wiki/Pointer_(computer_programming)

• C Pointer Tutorial :
http://www.tutorialspoint.com/cprogramming/c_pointers.htm

30

https://en.wikipedia.org/wiki/Pointer_(computer_programming)
http://www.tutorialspoint.com/cprogramming/c_pointers.htm

