
Binghamton

University

CS-211

Fall 2019

Attendance

Please click on A if you are here:

A. I am here today.

Binghamton

University

CS-211

Fall 2019

Debugging

2

Binghamton

University

CS-211

Fall 2019

Preventing Bugs

1. Think through how things are going to work before writing code

2. Think about what could go wrong before writing code

3. Use “assert” in your code when you assume

4. Be meticulous (the computer is)

5. Fix compiler errors and warnings

6. Test your code for both expected and unexpected cases

7. Test on the machine where your code will be run

3

Binghamton

University

CS-211

Fall 2019

Program Design

• Functional decomposition
• Divide problem up into digestible chunks
• Code and test a single function at a time

• Make sure this function works so it is a low priority suspect when you code fails

• Don't always write the first thing that comes into your head
• Is there a better way to do this?
• Good programmers are lazy!

• The scientific method of programming
• Come up with a theory of how your code will work
• Experiment – code your theory and test it… does it work?
• Learn from your mistakes!

Binghamton

University

CS-211

Fall 2019

Antici…….. pation

• Train yourself to think about what might go wrong

• Could that loop be an endless loop?

• Are there any uninitialized variables?

• What if the command line argument is negative?

• Is that division an integer division or floating point?

• Can my array indexes go out of bounds?

Binghamton

University

CS-211

Fall 2019

Why assert?

• When you write code, you make assumptions

• If those assumptions are violated, things could go terribly wrong

• “assert” is a way of telling the compiler:
• Here is what I am assuming

• Check my assumptions while the code is running

• If my assumption is incorrect STOP RIGHT HERE! issue an error message and
quit

• Often, if the code continues, it’s hard to figure out where you went
wrong

Binghamton

University

CS-211

Fall 2019

Assert Mechanics

• #include <assert.h>

• That makes a function available…

void assert(boolean assertion)

• If the assertion is true, no action is performed

• If the assertion is false…
1. The system prints a message with the assertion and the C file, current

function, and line number which contains the assert.

2. The system aborts the current program

• Assertion checking can be disabled: #define NDEBUG

Binghamton

University

CS-211

Fall 2019

Using Assert
…

#include <assert.h>

int main(int argc, char **argv) {

assert(argc>1);

int d=atoi(argv[1]);

assert(d!=0);

printf("10.0/%d = %f\n",d,10.0/d);

return 0;

} >./testAssert

assertion "argc>1" failed: file "testAssert.c", line 6, function: main

>./testAssert 0

assertion "d!=0" failed: file "testAssert.c", line 8, function: main

>./testAssert 3

10.0/3 = 3.333333
8

Binghamton

University

CS-211

Fall 2019

When to Use Assert

• Do not use assert for user error checking
• assert messages are hard to read unless you wrote the code
• assert does not "exit gracefully" e.g. clean up after itself

• Use assert for conditions that are not likely to happen, but if they do
happen, will break your code

• For instance, if you assume an input is positive: assert(n>0)
• For instance, parameter is within array bounds: assert(j<NUMGRADES)
• Need to think about what you are assuming

• Do not use assert for conditions which cannot occur
• For instance, for(i=0;i<NUMGRADES;i++) { assert(i<NUMGRADES); …

• Use assert for problems caused by your code… not the user

Binghamton

University

CS-211

Fall 2019

Fixing Compiler Errors & Warnings

• Start from the top of the code
• Once the compiler gets confused, it often complains about things that aren’t

really problems

• Fix the first error, then recompile
• Sometimes I fix several errors, but only if I know there is no overlap

• Compiler warnings often represent errors in logic

• Fixing seemingly trivial compiler warnings often lead to discovery of
more problems

Binghamton

University

CS-211

Fall 2019

Testing Code

• "Unit Test"
• Test one function at a time
• Often requires extra code - a "main" function to invoke the function being tested
• Advantage – isolate bugs to a very small piece of code, can test one small piece of

code before coding the rest of the program
• Disadvantage – requires lots of manual effort

• "System Test"
• Test the entire set of functions together
• Uses the final program – no extra code required
• Advantage – easy
• Disadvantage – Need to consider lots of different potential problems, need to finish

entire program before you can start testing

Binghamton

University

CS-211

Fall 2019

Test Cases

• User will often provide one or two examples of how the code should
work… input and output

• Clearly your code needs to produce the correct answer for these cases

• Do your first test with very simple obvious small test cases
• Clean up any simple obvious bugs first

• You will need to think about other ways your user will run your code
• What other kinds of input might your user provide

• Will the user provide input that violates your assumptions?

• Assignments in this class are DESIGNED to force you to come up with
your own test cases

Binghamton

University

CS-211

Fall 2019

Debugging

• When you run a test and get the wrong result… Why?
• "Because I'm an idiot" – Probably not true, but even if it is, that doesn't get us

anywhere. In fact, it's counter-productive!

• "Because I don't get it" – May be true – but the follow up question is, what
don't you get, and why don't you get it? Can you learn from your mistakes?
Can you understand more about the problem?

• Writing a program is like being a blacksmith
• The first time out of the forge, the hot iron doesn't look like the final product

• It takes lots of effort, hammering, reheating, shaping and polishing

if(p == 0 && n>0){
printf("Not enough digits in

result.\n");
return result;

}

Binghamton

University

CS-211

Fall 2019

First Computer Bug

14

Binghamton

University

CS-211

Fall 2019

The “printf” debugger

15

Binghamton

University

CS-211

Fall 2019

printf debug pro’s and con’s

Advantages

• Don’t need any special tools

• Works anywhere you can
compile

• Use full power of C
• if (xyz) printf(“debug…”);

• …

Disadvantages

• Requires many trips around the
edit/compile/test/evaluate loop

• Need to remove debug before
delivering to customer

16

Binghamton

University

CS-211

Fall 2019

• Start debug in column 1 so it looks different from real code

• Don’t remove debug (you might need it again later)
• Instead, comment using line (//) comment delimiter

• Use a debug marker in debug messages
• I like the prefix “DBG:”, so my debug messages read:

DBG: x=17, y=19, about to call testfn(17,19)
DBG: x=17, y=20, about to call testfn(17,20)
…

• Give a hint about where the debug message comes from.

printf debug suggestions

17

Binghamton

University

CS-211

Fall 2019

Alternatives to printf debugging

• printf debugging is easy and requires no effort to learn
• Therefore many of you will do nothing but printf debugging

• printf debugging is time consuming and error prone
• Costs WAY MORE time than the alternatives

• Requires many iterations around the loop
• Each iteration requires analysis, compile, invoke

• Each iteration must eventually be undone

• Once you learn a real debugger, you will never
want to use the printf debugger again!

• We will learn "gdb" (Gnu Debugger)

Binghamton

University

CS-211

Fall 2019

GNU DeBugger

Allows you to run your C program interactively

• Run up to a specific line or lines

• print out any C variable or expression

• Single step through your code

• Learn about the context of your code
• Where were you called from?

• What arguments were passed to you?

• etc.

19

Binghamton

University

CS-211

Fall 2019

The GDB Command Line

• GDB is an interactive debug tool for C code

• Start GDB… Run “gdb executable_file”

• Puts you into a GDB command line environment

• In this environment, gdb prompts with:

(gdb)

• You enter a command, telling gdb what to do next

• gdb executes your command, then puts up a new prompt

• Until you enter the “quit” command

GDB command
goes here

Binghamton

University

CS-211

Fall 2019

Getting help

(gdb) help
• results in a list of gdb commands you can use

(gdb) help break
• Gives more information about a specific command… e.g. “break”

Binghamton

University

CS-211

Fall 2019

GDB “run” command

(gdb) run word1 word2
• Starts executing your program

• Everything after “run”: arguments to main, for example:

argc=3,

argv[0]=“mypgm” argv[1]=“word1”, argv[2]=“word2”

• gdb continues to execute your program until:

• your program ends,

• your program aborts,

• a “breakpoint” is reached

Binghamton

University

CS-211

Fall 2019

Breakpoints

• GDB keeps a list of “breakpoints” – locations in your code

• Every time you reach a breakpoint:
• GDB stops executing your code BEFORE executing the line of code
• GDB prints out a message to say where it stopped
• GDB prompts you for what to do next
• If a breakpoint is inside a loop, gdb will stop EVERY time that line is executed

• You can make a breakpoint conditional by adding “if (condition)”
• gdb will stop only if the condition is true

• The list of breakpoints starts out empty (so you probably want to
create breakpoints first thing)

Binghamton

University

CS-211

Fall 2019

GDB Breakpoint Commands

(gdb) break 21
• Set an unconditional breakpoint at line 21 of the current C code file

(gdb) break 21 if (j > 17)
• Set a conditional breakpoint at line 21 of the current C code file

• gdb stops at line 21 only if j>17 is true when line 21 is reached

(gdb)break main
• Set an unconditional breakpoint at the first instruction of function “main”

Binghamton

University

CS-211

Fall 2019

Printing information

(gdb) print j
• Evaluates expression after “print”,
• Assigns the result to a "pseudo-variable" $n for later use
• Writes the result to the screen

$1 = 13
• Expression is any valid C expression!
• All “current” variables can be used in the expression
• Can use $n to refer to previous print results

(gdb) print $1*2

$2 = 26

Binghamton

University

CS-211

Fall 2019

Execute one instruction

(gdb) step
• Executes the next C instruction, prints out the next line to be executed, then re-prompts

12 int p1=atoi(argv[1]);

(gdb) step
• If current instruction contains a function call, stop at the first instruction in that function.

atoi (s=0x0)

at /usr/src/debug…/stdlib/atoi.c:70

70 return (int) strtol (s, NULL, 10);

(gdb)

Binghamton

University

CS-211

Fall 2019

Execute next instruction

(gdb) next
• Executes the next C instruction, prints out the next line to be executed, then

re-prompts

23 printf(“DBG: magic=%d\n”,magicNumber);

(gdb) next
• If current instruction contains a function call, execute the entire function,

then stop before the next instruction after the function call.

24 for(i=0;i<10;i++) {

Binghamton

University

CS-211

Fall 2019

Execute to next breakpoint or end

(gdb) continue

Binghamton

University

CS-211

Fall 2019

Get out of gdb altogether

(gdb) quit

A debugging session is active.

Inferior 1 [process 9388] will be killed.

Quit anyway? (y or n) y

>

Binghamton

University

CS-211

Fall 2019

GDB Command Style

• GDB does not require the full command name
• only enough to distinguish it from any other command

• e.g. “p” is good enough for “print” because no other gdb commands start
with “p”

• A null command (just enter) repeats the last command
(gdb) n
main.c:6 x=x+1;
(gdb)
main.c:7 y=y+1;

(gdb)

• Or use up and down arrows to scroll through command history

30

Binghamton

University

CS-211

Fall 2019

Using GDB Effectively

• Identify problem as quickly as possible

• Don't single step through lots and lots of preliminary code
• Set a breakpoint at the start of where you think the code is broken

• Don't break at every iteration of a loop
• Avoid stopping 132 times to get to the 133 iteration of a loop

• Use a conditional breakpoint "break 48 if (j==133)"

• If you get PAST the problem, restart with a new "run" command
• All your breakpoints are still active

Binghamton

University

CS-211

Fall 2019

GDB Hints

• Invest some time getting comfortable with gdb
• It will save you time over and over and over again!

• Open your code in a separate editor window before starting gdb
• It’s much easier to read your code in the editor than in gdb

• No easy way to “back up” in gdb.
• If you have gone too far, start again from the beginning. Either quit and

restart gdb, or restart with the “run” command

• No easy way to change code and continue
• If the code needs to be changed, need to quit, recompile, and restart gdb

32

Binghamton

University

CS-211

Fall 2019

GDB Demo

33

Binghamton

University

CS-211

Fall 2019

Resources

• Programming in C, Chapter 17

• Wikipedia: assert.h (https://en.wikipedia.org/wiki/Assert.h)

• On-line GDB manual
(https://sourceware.org/gdb/current/onlinedocs/gdb/)

• Wikipedia: GNU Debugger
(https://en.wikipedia.org/wiki/GNU_Debugger)

34

https://en.wikipedia.org/wiki/Assert.h
https://sourceware.org/gdb/current/onlinedocs/gdb/
https://en.wikipedia.org/wiki/GNU_Debugger

