
Binghamton

University

CS-211

Fall 2019

Attendance

Please click on A if you are here:

A. I am here today.

Binghamton

University

CS-211

Fall 2019

Review Demo : Conversion

Given a floating point number, return an integer representation of that
number rounded using various different rounding policies:

• round up

• round down

• round towards zero

• round towards +/- infinity

• round to the nearest integer

… Without using C library functions

Binghamton

University

CS-211

Fall 2019

Arrays in C

3

Binghamton

University

CS-211

Fall 2019

One Dimensional Array (Vector)

• Ordered List of Values

• All of the same type

• Individual elements accessible by “index”

• Vector has a Size (Number of elements)

4

Index 0 1 2 3 4 5

Value 17.3 14.5 3.2 12.0 5.65 14.5

Binghamton

University

CS-211

Fall 2019

Why Use a Vector?

• When your data is a list of values

• For instance, gates per chip

int gpc[4];

gpc[0]=gpc[1]=gpc[3]=4; gpc[2]=6;

5

0 1 2 3

4 4 6 4

Binghamton

University

CS-211

Fall 2019

One Dimensional Array Declaration

type name[size];

• type - Any built-in or derived data type
• int, char, short, float, etc.

• name - Any valid variable name
• e.g. vx, vy, myArray, etc. etc.

• size - Integer constant - how many items are in the list

• Vectors must be declared before they are used.

• Once the size is specified, it cannot be changed!

6

Binghamton

University

CS-211

Fall 2019

Vector Size

• Number of elements

int vec[4]; // Reserve space for 4 integers

• WARNING: Indexes are 0,1,2,3
• Index starts at 0

• Index ends at (SIZE-1)

• To find the size of an array: sizeof(vec)/sizeof(int)
• sizeof calculates the number of bytes needed for a variable or type

• In the above example, sizeof(vec)=36, sizeof(int)=4

7

Binghamton

University

CS-211

Fall 2019

Referencing Vector Values

name[index]

• name - The (declared) name of a vector

• index - The index of a specific element in the vector
• “First” element in the vector is vec[0]

• “Last” element in the vector is vec[size-1]

• Index may be any valid integer expression
• e.g. : vec[3], vec[j], vec[2*i+1]

8

Binghamton

University

CS-211

Fall 2019

Example Vector Code

int grades[14];

… // Code which fills in grades goes here

int j,sum=0;

for(j=0; j<14; j++) {

sum +=grades[j];

}

float avg=(float)sum/14.0;

printf(“Average grade: %f\n”,avg);

9

Binghamton

University

CS-211

Fall 2019

Initializing a Vector

int x=7; // Initializing a scalar variable

int gpc[4]={4,4,6,4}; // Initializing vector

• Or, let the compiler count the number of elements

int gpc[]= {4,4,6,4};

10

0 1 2 3

4 4 6 4

Binghamton

University

CS-211

Fall 2019

Array Declaration with Initialization

type name[size] = { list_of_constants };

• Each constant separated by a comma

• If size specified, and list is too short, padded to the right with zeroes

• If size is not specified, size is number of elements in list

• IF ARRAY IS NOT INITIALIZED IT’S INITIAL VALUE IS UNKNOWN!
• Whatever value was in memory when the functions starts

11

Binghamton

University

CS-211

Fall 2019

C Idiom: Zeroing out an Array

• Initialization “rule”… if you specify an initializer that does not contain
enough values, C will “pad” your initializer to the right with 0.

• Thus, to initialize an entire array to zero, just specify a single 0 value.

int countOranges[37] = { 0 }; // All 37 orange boxes are empty

Binghamton

University

CS-211

Fall 2019

Question

• What gets printed?

A. No value – compiler error.

B. Nothing – endless loop

C. vec[3]=4

D. Segmentation violation

int vec[5]; int i;
for(i=0;i<=5;i++) vec[i]=4;

printf("vec[3]=%d\n",vec[3]);

Binghamton

University

CS-211

Fall 2019

Pitfall: Array Bounds Checking

int vec[5]; int i;

for(i=0;i<=5;i++) vec[i]=4;

• NO RUN-TIME ARRAY BOUNDS CHECKING IN C!!!!!!!!!!!!

• Trust the programmer, and save the run-time!

• Programmer must be trustworthy!

• Writing past the end of an array can cause many problems
• May write over other variables
• May cause a segmentation violation

14

vec[0]
4

vec[1]
4

vec[2]
4

vec[3]
4

vec[4]
4

i
4

Binghamton

University

CS-211

Fall 2019

Matrix – Two Dimensional Array

• Declaration: type name[rows][cols];

• Reference: name[row_index][col_index]
• 0 <= row_index < rows

• 0 <= col_index < cols

• Indexes may be any integer expressions

15

Binghamton

University

CS-211

Fall 2019

Why Use a Matrix?

• When your data is rectangular in nature

• For example, Grades for Multiple Students
• Each student takes one row

• Each grades takes one column

16

Student Quiz1 Homework1 Test1 Homework2 …

John Smith 98 76 68 82 …

Alice Jones 73 94 86 79 …

Jane Jameson 62 73 68 70 …

… … … … …

Binghamton

University

CS-211

Fall 2019

Example Matrix Code

int grades[20][14]; // Space for 20 students, 14 grades

…

int st;

for(st=0;st<20;st++) {

int gr; int sum=0;

for(gr=0;gr<14;gr++) sum+=grades[st][gr];

printf(“Average for student %2d: %f\n”, st, sum/14.0);

}

17

Binghamton

University

CS-211

Fall 2019

Array Dimensions

Vector: int vec[4]={10,20,30,40};

Matrix: int matrix[2][3]={{10,11,12},{20,21,22}}

Cube: char cube[3][2][3]=
{{"abc","def"},{"ghi","jkl"},{"mno","pqr”}};

18

vec[0] vec[1] vec[2] vec[3]

10 20 30 40

matrix[0][0]
10

matrix[0][1]
11

matrix[0][2]
12

matrix[1][0]
20

matrix[1][1]
21

matrix[1][2]
22

[0][0][0]
‘a’

[0][0][1]
‘b’

[0][0][2]
‘c’

[0][1][0]
‘d’

[0][1][1]
‘e’

[0][1][2]
‘f’

[1][0][0]
‘g’

[1][0][1]
‘h’

[1][0][2]
‘i’

[1][1][0]
‘j’

[1][1][1]
‘k’

[1][1][2]
‘l’

[2][0][0]
‘m’

[2][0][1]
‘n’

[2][0][2]
‘o’

[2][1][0]
‘p’

[2][1][1]
‘q’

[2][1][2]
‘r’

Binghamton

University

CS-211

Fall 2019

Array Values are “Contiguous”

• Right next to each other in memory

• int vec[6]

• int m [4][3];

• If we know where the first element is, we know the entire array!

19

vec[0] vec[1] vec[2] vec[3] vec[4] vec[5]

m[0][0] m[0][1] m[0][2] m[1][0] m[1][1] m[1][2] m[2][0] m[2][1] m[2][2] m[3][0] m[3][1] m[3][2]

Binghamton

University

CS-211

Fall 2019

“Row Major Order”
• Think of multi-dimensional indexes as an odometer…

• Rightmost digit of index increases the fastest

• Once rightmost digit reaches it’s limit, it goes back to zero, and

• Digit to the left increases by 1

int m[4][3]={0,1,2,10,11,12,

20,21,22,30,31,32};

20

m[0][0] m[0][1] m[0][2] m[1][0] m[1][1] m[1][2] m[2][0] m[2][1] m[2][2] m[3][0] m[3][1] m[3][2]

0 1 2 10 11 12 20 21 22 30 31 32

0 1 2

0 0 1 2

1 10 11 12

2 20 21 22

3 30 31 32

Binghamton

University

CS-211

Fall 2019

Using Entire Arrays

• We know how to manage individual elements of an array
• Individual elements are primitive types – numbers, characters, etc.

int gpc[4]={4,4,6,4}; // Initializing vector

printf("The third chip has %d gates\n",gpc[2]);

• What can we do with an ENTIRE array?

printf("The gpc array is %x\n",gpc);

Binghamton

University

CS-211

Fall 2019

Array “Types”

• “Type” tells the compiler how to interpret a value
• int, float, char, etc.

• An array has a “type” – tells the compiler how to read the array
• Includes the number of dimensions

• Includes the size of each dimension

• Includes the type of each element

• For instance, to declare a parameter which is a vector:

int sum(int grades[17]) { …

Binghamton

University

CS-211

Fall 2019

Array Parameters with Size

• See arrayArg_simple.c

• Declare a parameter with a fixed size

• C Assumes the argument is an array of the given size!
• Compiler does not check

• If array is actually smaller, no warning/error messages – just wrong results

Binghamton

University

CS-211

Fall 2019

Array Parameters are REFERENCES

• The argument is not actually an array… it is a REFERENCE TO an array

• The parameter (inside the function) is a COPY OF the REFERENCE!

• If the function modifies the array it is modifying the ACTUAL array and
your caller can see those modifications!

• See arrayArg_mod.c

Binghamton

University

CS-211

Fall 2019

Array Parameters with Undefined Size

• C allows specification of an array parameter without a specific size

• The function must still know what the correct (valid) size should be
• For instance, with a separate "size" parameter

• For multi-dimensional arrays, only the FIRST size can be unspecified

• See arrayArg_usize.c

Binghamton

University

CS-211

Fall 2019

Using "Guard" values

• One strategy is to define a value that is "invalid" in the array

• For instance, in gates per chip, -1 is an invalid value

• Use the invalid value to identify the size of the array
• Everything up to, but not including the guard value is valid

• See arrayArg_guard.c

Binghamton

University

CS-211

Fall 2019

C "strings"

• Strings are an array of characters with a guard value of 0x00
• 0x00 is called a "null terminator"

• There is no ASCII printable character with the value 0x00

• Note: in C, "char string[]" and "char * string" mean exactly the same
thing – an array characters of unknown length (hopefully with a null
terminator).

• Warning: char * string does not allocate memory for a string
• char string[]="This is a string"; does

Binghamton

University

CS-211

Fall 2019

String Literals

• The literal "my string" is the same as… {'m','y',' ','s','t','r','i','n','g',0x00}
• An array initializer with character elements

• Note that this is the same as…

{0x6d, 0x79, 0x20, 0x73, 0x74, 0x72, 0x69, 0x6e, 0x67, 0x00 }

char str[]="my string";

printf("string length of \"%s\" is %d, length of str is %d\n",

str,strlen(str),sizeof(str));

prints: string length of "my string" is 9, length of str is 10

Binghamton

University

CS-211

Fall 2019

Demo

Make an array of characters from the common
phrase “we hold these truths to be self evident;
that all men are created equal”.

Find and print the index of every ‘e’ in this phrase

Binghamton

University

CS-211

Fall 2019

Resources

• Programming in C, Chapter 6 (Arrays)

• C FAQ Arrays and Pointers: http://c-faq.com/aryptr/index.html

• C Tutorial on Arrays:
http://www.crasseux.com/books/ctutorial/Arrays.html#Arrays

• Wikipedia Array Data Structure:
https://en.wikipedia.org/wiki/Array_data_structure

• Wikipedia C Arrays section:
https://en.wikipedia.org/wiki/C_(programming_language)#Arrays

30

http://c-faq.com/aryptr/index.html
http://www.crasseux.com/books/ctutorial/Arrays.html#Arrays
https://en.wikipedia.org/wiki/Array_data_structure
https://en.wikipedia.org/wiki/C_(programming_language)#Arrays

