Binghamton CS-211

University Fall 2019

1> 1Clicker Attendance

Please click on A if you are here:

A. | am here today.

Binghamton CS-211

University Fall 2019

Review Demo : Conversion

Given a floating point number, return an integer representation of that
number rounded using various different rounding policies:

* round up

* round down

* round towards zero

* round towards +/- infinity

* round to the nearest integer

... Without using C library functions

CS-211
Fall 2019

in C

Arrays

(—
S
g
£ 8
eh =
g =
m D

Binghamton CS-211

University Fall 2019

One Dimensional Array (Vector)

* Ordered List of Values

 All of the same type

* Individual elements accessible by “index”
* \Vector has a Size (Number of elements)

mn—--n-
Value 17.3 14.5

Binghamton CS-211

University Fall 2019

Why Use a Vector’?

Vi Vo
ﬂﬂ]lﬁ]ﬁﬂﬁﬂﬁﬂ]mrﬂ ﬁﬂﬂﬂﬂﬂmﬂﬂ]mrﬂ 4] [T3] [T2] fT] [T0) [9][5] [T4] 3] {2 [TT][T0] [9] [5]

) 5 y o P) ESgts
P p) U P
AREEIEEET EEREETT TRIEEEEET R e EE R
RO =MD MG R0

* When your data is a list of values

* For instance, gates per chip nnn
4 4 6 4

int gpcl4];
gpc[0]=gpc[1]=gpc[3]=4; gpc[2]=6;

Binghamton CS-211

University Fall 2019

One Dimensional Array Declaration

type namelsize];

* type - Any built-in or derived data type
* int, char, short, float, etc.

* name - Any valid variable name
* e.g. vx, vy, myArray, etc. etc.

* size - Integer constant - how many items are in the list

* Vectors must be declared before they are used.
* Once the size is specified, it cannot be changed!

Binghamton CS-211

University Fall 2019

Vector Size

* Number of elements
int vec[4]; // Reserve space for 4 integers

* WARNING: Indexes are 0,1,2,3

* Index starts at O
* Index ends at (SIZE-1)

* To find the size of an array: sizeof(vec)/sizeof(int)
* sizeof calculates the number of bytes needed for a variable or type
* In the above example, sizeof(vec)=36, sizeof(int)=4

Binghamton CS-211

University Fall 2019

Referencing Vector Values

namelindex]

* name - The (declared) name of a vector

* index - The index of a specific element in the vector
* “First” element in the vector is vec[0]
e “Last” element in the vectoris vec[size-1]

* Index may be any valid integer expression
« e.g.:vec[3], vec[jl, vec[2*i+1]

Binghamton CS-211

University Fall 2019

Example Vector Code

int grades|[14];
... /] Code which fills in grades goes here
int j,sum=0;
for(j=0; j<14; j++) {
sum +=grades]|j];
§
float avg=(float)sum/14.0;
printf(“Average grade: %f\n”,avg);

Binghamton CS-211

University Fall 2019

Initializing a Vector

int x=7; // Initializing a scalar variable
int gpcl[4]=1{4,4,6,4}; // Initializing vector

Lo | 1 2 3
4 4 6 4

* Or, let the compiler count the number of elements
int gpc| 1= {4,4,6,4};

10

Binghamton CS-211

University Fall 2019

Array Declaration with Initialization

type namelsize] = { list_of constants };

e Each constant separated by a comma
* If size specified, and list is too short, padded to the right with zeroes
* If size is not specified, size is number of elements in list

* IF ARRAY IS NOT INITIALIZED IT’S INITIAL VALUE IS UNKNOWN!

* Whatever value was in memory when the functions starts

11

Binghamton CS-211

University Fall 2019

C Idiom: Zeroing out an Array

* Initialization “rule”... if you specify an initializer that does not contain
enough values, C will “pad” your initializer to the right with 0.

* Thus, to initialize an entire array to zero, just specify a single 0 value.

int countOranges[37] ={0}; // All 37 orange boxes are empty

Binghamton CS-211

Fall 2019

University

> iClicker Question

int vec[5]; int i;
for(i=0;i<=5;i++) vecli]=4;

* What gets printed? printf("vec[3]=%d\n",vec[3));

A. No value — compiler error.
B. Nothing —endless loop

C. vec[3]=4

D. Segmentation violation

Binghamton CS-211

University Fall 2019

Pitfall: Array Bounds Checking

vec[0] vec[1] vec[2] vec[3] vec[4]
4 4 4 4 4 4

int vec[5]; int i;
for(i=0:i<=5:i++) vec|i]=4;

* Trust the programmer, and save the run-time!
* Programmer must be trustworthy!

* Writing past the end of an array can cause many problems

* May write over other variables
* May cause a segmentation violation

14

Binghamton CS-211

University Fall 2019

Matrix — Two Dimensional Array

* Declaration: type name[rows][cols];

* Reference: namel[row _index][col _index]
* O0<=row_index < rows
* 0<=col _index < cols

* Indexes may be any integer expressions

15

Binghamton CS-211

University Fall 2019

Why Use a Matrix?

* When your data is rectangular in nature

Student | Quizl| Homeworki| ___Testl|Homework2| ..
98 76 68 82
Alice Jones 73 94 86 79

Jane Jameson 62 73 68 70

* For example, Grades for Multiple Students
e Each student takes one row
* Each grades takes one column

16

Binghamton CS-211

University Fall 2019

Example Matrix Code

int grades[20][14]; // Space for 20 students, 14 grades

Int st;

for(st=0;st<20;st++) {
int gr; int sum=0;
for(gr=0;9r<14;gr++) sum+=grades|[st][gr];
printf("Average for student %2d: %f\n", st, sum/14.0);

17

Binghamton CS-211

University Fall 2019

Array Dimensions

Matrix: int matrix[2][3]={{10,11,12},{20,21,22}}

Vector: int vec[4]={10,20,30,40};
matrix[0][0] matrix[0][1] matrix[0][2]

10 11 12
1
vec[0] |vec[1] |vec[2] |vec3] matri(1][0] matrbqll[l] matrix(1][2]
10 20 30 40 20 21 22

Cube: char cube[3][2][3]- 21[0](0] [2)(01[1] [2][0][2]

{{"abC"’"def“}’{"ghi"'"jkln}'{"mnO"’"pqr”}}; m n O
[jojo] [[Ho)2] Bl (210100 [[2][1]2]
lgl lhl lil lpl lql lrl

[0][0][0] [O][0][1] [O][O][2] [1][1]1[0] [2][1l[1] [1][1][2]
‘@’ ‘b’ ot ik 1% v

[0l[1]{o] [o]{1]{1] [O][1][2]
‘d’ ‘e’ ‘7

18

Binghamton

CS-211

University

Array Values are “Contiguous”

* Right next to each other in memory

Fall 2019

* int vec|6]
vec[0] vec[1] vec[2] vec[3] vec[4] vec[5]
* int m [4][3];
m[0][0] | m[O][1] | ml[O][2] | m[1][0] |m[1][1] |mf[1][2] |m[2][0] |m(2][1] |m(2][2] | m([3][0] |m([3][1] | m([3][2]

* If we know where the first element is, we know the entire array!

19

CS-211
Fall 2019

Binghamton

University

"Row Major Order”

* Think of multi-dimensional indexes as an odometer...

e Rightmost digit of index increases the fastest
* Once rightmost digit reaches it’s limit, it goes back to zero, and

1 2

* Digit to the left increases by 1

B ¢
int m[4][3]={0,1,2,10,11,12, 1 11 12
20.21,22.30,31,32 HEEN 21 22
e =0 31 32
m[O][0] | m[O][1] | m[O][2] | m[1][O0] | mI[1][1] | m[1][2] | m[2][0] | m([2][1] | m[2][2] | m[3][0] | m[3][1] | mI[3][2]
0 1 2 10 11 12 20 21 22 30 31 32

20

Binghamton CS-211

University Fall 2019

Using Entire Arrays

* We know how to manage individual elements of an array
* Individual elements are primitive types — numbers, characters, etc.

int gpc[4]={4,4,6,4}; // Initializing vector
printf("The third chip has %d gates\n",gpc[2]);

* What can we do with an ENTIRE array?
printf("The gpc array is %x\n",gpc);

Binghamton CS-211

University Fall 2019

Array “Types”

* “Type” tells the compiler how to interpret a value
* int, float, char, etc.

* An array has a “type” — tells the compiler how to read the array
* Includes the number of dimensions
* Includes the size of each dimension
* Includes the type of each element

* For instance, to declare a parameter which is a vector:

int sum(int grades[17]) { ...

Binghamton CS-211

University Fall 2019

Array Parameters with Size

e See arrayArg_simple.c

* Declare a parameter with a fixed size

* C Assumes the argument is an array of the given size!
* Compiler does not check
* If array is actually smaller, no warning/error messages — just wrong results

Binghamton CS-211

University Fall 2019

Array Parameters are REFERENCES

* The argument is not actually an array... it is a REFERENCE TO an array
* The parameter (inside the function) is a COPY OF the REFERENCE!

* If the function modifies the array it is modifying the ACTUAL array and
your caller can see those modifications!

* See arrayArg_mod.c

Binghamton CS-211

University Fall 2019

Array Parameters with Undefined Size

 C allows specification of an array parameter without a specific size

* The function must still know what the correct (valid) size should be
e For instance, with a separate "size" parameter

* For multi-dimensional arrays, only the FIRST size can be unspecified

* See arrayArg_usize.c

CS-211
Fall 2019

Binghamton

University

Using "Guard" values

* One strategy is to define a value that is "invalid" in the array
* For instance, in gates per chip, -1 is an invalid value

e Use the invalid value to identify the size of the array
* Everything up to, but not including the guard value is valid

e See arrayArg_guard.c

Binghamton CS-211

University Fall 2019

C "strings"”

e Strings are an array of characters with a guard value of 0x00
e 0x00 is called a "null terminator”
* There is no ASCII printable character with the value 0x00

* Note: in C, "char string[]" and "char * string" mean exactly the same
thing — an array characters of unknown length (hopefully with a null
terminator).

e Warning: char * string does not allocate memory for a string
e char string[]="This is a string"; does

Binghamton CS-211

University Fall 2019

String Literals

* The literal "my string" is the same as... {'m’,'y'," ,'s",'t",'r","i','n",'g',0x00}
* An array initializer with character elements
* Note that this is the same as...

{Ox6d, 0x79, 0x20, 0x73, 0x74, 0x72, 0x69, Ox6e, Ox67, 0x00 }

char str[]="my string";

printf("string length of \"%s\" is %d, length of str is %d\n",
str,strlen(str),sizeof(str));

prints: string length of "my string" is 9, length of stris 10

Binghamton CS-211

University Fall 2019

Make an array of characters from the common
phrase “we hold these truths to be self evident;

that all men are created equal”.
Demo ’

Find and print the index of every ‘e’ in this phrase

Binghamton CS-211

University Fall 2019

Resources

* Programming in C, Chapter 6 (Arrays)
* C FAQ Arrays and Pointers: http://c-fag.com/aryptr/index.html

e C Tutorial on Arrays:
http://www.crasseux.com/books/ctutorial/Arrays.html#Arrays

* Wikipedia Array Data Structure:
https://en.wikipedia.org/wiki/Array data structure

* Wikipedia C Arrays section:
https://en.wikipedia.org/wiki/C (programming language)#Arrays

30

http://c-faq.com/aryptr/index.html
http://www.crasseux.com/books/ctutorial/Arrays.html#Arrays
https://en.wikipedia.org/wiki/Array_data_structure
https://en.wikipedia.org/wiki/C_(programming_language)#Arrays

