Binghamton CS-211

University Fall 2019

1> 1Clicker Attendance

Please click on A if you are here:

A. | am here today.



Binghamton CS-211
University Fall 2019

raC’[I

(@ 3 Softe rzg‘ @su




Binghamton CS-211

University Fall 2019

Function Definition Video Review

* First Line:
* Return type
* name
e argument list

* Body

* return statement

e Declaration vs. Definition
* Right side up code



Binghamton CS-211

University Fall 2019

Program Design : Functions

* Break up a big problem into smaller problems
* Encapsulate each smaller problem in a function

* Keep functional boundaries clear and well defined
* Think in terms of parameters, processing, return value
 Remember, each function can only return one value

 Example: Project installment 2 Verilog infrastructure

* Fancy name: Functional Decomposition



Binghamton CS-211

University Fall 2019

Demo

* We are working on CAD for house plans. Our customer has asked us
to write a function, given the length and width of a wall in inches,
figure out how many linear feet of board to the nearest foot will we
need to cover the wall if the boards are 8 inches wide?



Binghamton CS-211

University Fall 2019

Big Picture

= ySloy )

(e \yjdth eeeee———)

Need ceil(height/8) boards, each width wide.
Need ceil(boards * width/12) linear feet



Binghamton CS-211

University Fall 2019

Function Arguments?

 What values is the user willing to give us?
 What do we need to figure out the answer?
 What is the data type of each argument?

* What name will you use for each argument?
e Easy to type and remember

Note: When you implement your function, you may change your mind.
That’s OK.



Binghamton CS-211

University Fall 2019

Return Type”?

* What type of data does your user expect you to return?
* Does the data type reflect the precision of the inputs?



Binghamton CS-211

University Fall 2019
Function Invocation Video Review
* Argument Expression Evaluation Ea—

* Copy arguments to parameters

* Transfer control to called function > s -

» "Replace" invocation with returned result

* Function "side-effects" Other than just calculating return value
* Read or write to/from the terminal or a file
* Update global variables
* manage memory

* "void" functions are all about side-effects



Binghamton CS-211

University Fall 2019

Data Conversion



CS-211
Fall 2019

Binghamton

University

> iClicker Question
int x=2; float y=3.1;

Y=Y"X;
printf("y=%f\n",y);

* What gets printed?

A. No value — compiler error.
B. y=3.1

C. y=6

D. y=6.2



Binghamton CS-211

Fall 2019

University

> iClicker Question

int x=2; float y=3.1;
X=y*X;

o i ?
What gets printed: orintf"'x=%f\n".x):

A. No value — compiler error.
B. x=6

C. x=6.0

D. x=6.2



Binghamton CS-211

University Fall 2019

What happens when types are mixed?

* Mixed Type Expressions
int x; float y; x=y*x;

* Assignment Statements
int x; float y; x=y*3.0;

* Argument Evaluation
int myfn(float x); int y=myfn(3);

* Explicit Casting
int x=7; float y = ((float)x)/3;

13



Binghamton CS-211

University Fall 2019

C Automatic type conversion rules

* In an expression, C converts all components in that expression to the
most “general” type, and then evaluates the expression using that
general type

* In an assignment (or argument evaluation), C converts the value of
the expression to the type of the receiver

* C converts expressions with a valid explicit cast

14



Binghamton CS-211

University Fall 2019

Generality of Integer Types

unsigned long

unsigned int

unsigned short

u char

.

-8XB -2048M -32,768 128 0 127 255 32,767 65,535 2048M 4096M  8XB

char

short




Binghamton CS-211

University Fall 2019

Generality of Numeric Types

Most General

A A, \!|double
A ] Mfloat

A ] Munsigned
4] 7 m Iong Iong
Y ] Munsigned
A ] Mint int

A ] \!|unsigned
y - J[short short

- [unsigned
\!|char Uchar

Least General

16




Binghamton CS-211

University Fall 2019

Converting Signed vs Unsignhed

* Bits stay exactly the same, but the bits are INTERPRETTED differently

2726 20 120127 122 |20 20
1 1 10 10 1 0

char x = -22; unsigned char w = 234;
unsigned char y=x; char z=w;
printf(“y=%d\n",y); printf(“z=%d\n",z);

// prints y=234 /] prints z=-22




Binghamton CS-211

University Fall 2019

Converting Signed vs Unsignhed

* Bits stay exactly the same, but the bits are INTERPRETTED differently

2726 20 120127 122 |20 20
1 1 10 10 1 0

char x = -22; unsigned char w = 234;
unsigned char y=x; char z=w;
printf(“y=%d\n",y); printf(“z=%d\n",z;

// prints y=234 /] prints z=-22




Binghamton CS-211

University Fall 2019

Demo — Sign Conversion

int main(int argc,char **argv) {

int sint=atoi(argv|[1));
unsigned int uint=sint;

printf("sint=%10d = 0B%s = O0x%x\n",sint,bitString(sint),sint);
printf("uint=%10u = 0B%s = 0x%x\n",uint,uBitString(uint),uint);
return O;



Binghamton

CS-211

University

Changing Integer Size

* Truncate or Pad on left with sign bit

27 2° 20 |20 27 22 2t 20
1 110 10 10

Fall 2019

215 214212 212 91 1210120 120 27 125 25 2° 20 22 2t 20
11 1 1 1 1 1 11 1 1 O 1 O 1 O

char x = -22;
short y=Xx;

shortw = -22;

char z=w;




Binghamton

CS-211

University

Changing Integer Size (unsigned)

* Truncate or Pad on left with sign bit (=0)

27 2° 20 |20 27 22 2t 20
1 110 10 10

Fall 2019

215 214212 212 91 1210120 120 27 125 25 2° 20 22 2t 20
o o 0o 0o 0 606 0 01 1.1 O 1 O 1 O

unsigned char x = 234;
unsigned short y=x;

unsigned short w = 234;
unsigned char z=w;




Binghamton

University

CS-211
Fall 2019

Demo — widthConv.c

int main(int argc, char **argv) {
assert(argc>1);

int n32 = atoi(argv[1]);
long n64=n32;
short n16=n32;
char n08=n32;

unsigned int u32=n32;

unsigned long u64=u32;
unsigned short ul6=u32;
unsigned char u08=u32;

printf("n64=%10ld = 0x%016Ix\n",n64,n64);
printf("u64=%10lu = 0x%016Ix\n",u64,u64);
printf("n32=%10d = 0x%08x\n",n32,n32);
printf("'u32=%10u = 0x%08x\n",u32,u32);
printf("'n16=%10d = 0x%04hx\n",n16,n16);
printf("fu16=%10u = 0x%04hx\n",u16,ul6);
printf("n08=%10d = 0x%02hhx\n",n08,n08);
printf("u08=%10u = 0x%02hhx\n",u08,u08);
return O;



Binghamton CS-211

University Fall 2019

Integer to Float

e Add .0 and convert to nearest floating point representation

int x = 1331254215;

float y=x;

printf("y=%f\n",y);

/] prints y=1331254272.000000




Binghamton

CS-211

University

Float to Integer

* Truncate at the decimal point (round towards zero)

float w=-374289.74112;
Int z=w;
printf("z=%d\n",z);

/] prints z=-374289

Fall 2019



Binghamton CS-211

University Fall 2019

Demo — floatConv.c

int main(int argc, char **argv) {
assert(argc>1);

int i32=atoi(argv[1]);
float f32=atof(argv[1]);
int fi32=f32;

float if32=i32;

printf("i32=%d f32=%f fi32=%d if32=%f\n",i32,f32,fi32,if32);
return O:



Binghamton CS-211

University Fall 2019

Conversion Errors

* When C converts a negative signed number to a positive number
char x = -1; unsigned char y = x; printf("y = %d\n",y);

* When C converts a wide number to a smaller width, but the number
doesn’t fit

short x=260; chary = x; printf("y = %d\n",y);

* When C truncates decimals
float x=2.7; int y=x;; printf("y = %d\n",y);



Binghamton CS-211

University Fall 2019

Integer Division Pitfall

int atBats = atoi(argv[1]);
int hits = atoi(argv[2]);

float battingAverage = (hits/ atBats) * 1000.0;

printf(“"Everybody has a zero batting average?\n”);



Binghamton CS-211

University Fall 2019

> [Clicker Question

unsigned int width=+38;

signed int leftX = -13;

* What gets printed? if ((leftX < 0) && (leftx + width) > 0) {
printf(“Rectangle crosses y axis\n");

5

A. No value — compiler error.
B. Rectangle crosses y axis
C. Nothing



Binghamton CS-211

University Fall 2019

Explicit Casting

* Programmer tells C explicitly to perform conversion

* “cast” prefix operator: (type)expression
* Causes expression to be evaluated and then converted to the specified type

* Needed when the programmer knows better than the compiler!

* Note that casting is pretty high in operator precedence
 after parens, but before any mathematical operations

int battingAverage = ((float) hits/ atBats) * 1000;




Binghamton CS-211
Fall 2019

University

Resources

* Programming in C, Chapter 3, 13 (pp 325-328)

* Wikipedia Type Conversion:
https://en.wikipedia.org/wiki/Type conversion

e C Tutorial — Cast operator:
http://www.crasseux.com/books/ctutorial/The-cast-

operator.html#The%20cast%20operator

30


https://en.wikipedia.org/wiki/Type_conversion
http://www.crasseux.com/books/ctutorial/The-cast-operator.html#The%20cast%20operator

