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1> 1Clicker Attendance

Please click on A if you are here:

A. | am here today.
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Function Definition Video Review

* First Line:
* Return type
* name
e argument list

* Body

* return statement

e Declaration vs. Definition
* Right side up code
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Program Design : Functions

* Break up a big problem into smaller problems
* Encapsulate each smaller problem in a function

* Keep functional boundaries clear and well defined
* Think in terms of parameters, processing, return value
 Remember, each function can only return one value

 Example: Project installment 2 Verilog infrastructure

* Fancy name: Functional Decomposition
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Demo

* We are working on CAD for house plans. Our customer has asked us
to write a function, given the length and width of a wall in inches,
figure out how many linear feet of board to the nearest foot will we
need to cover the wall if the boards are 8 inches wide?
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Big Picture
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Need ceil(height/8) boards, each width wide.
Need ceil(boards * width/12) linear feet
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Function Arguments?

 What values is the user willing to give us?
 What do we need to figure out the answer?
 What is the data type of each argument?

* What name will you use for each argument?
e Easy to type and remember

Note: When you implement your function, you may change your mind.
That’s OK.



Binghamton CS-211

University Fall 2019

Return Type”?

* What type of data does your user expect you to return?
* Does the data type reflect the precision of the inputs?
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* Argument Expression Evaluation Ea—

* Copy arguments to parameters

* Transfer control to called function > s -

» "Replace" invocation with returned result

* Function "side-effects" Other than just calculating return value
* Read or write to/from the terminal or a file
* Update global variables
* manage memory

* "void" functions are all about side-effects
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Data Conversion
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> iClicker Question
int x=2; float y=3.1;

Y=Y"X;
printf("y=%f\n",y);

* What gets printed?

A. No value — compiler error.
B. y=3.1

C. y=6

D. y=6.2
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> iClicker Question

int x=2; float y=3.1;
X=y*X;

o i ?
What gets printed: orintf"'x=%f\n".x):

A. No value — compiler error.
B. x=6

C. x=6.0

D. x=6.2
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What happens when types are mixed?

* Mixed Type Expressions
int x; float y; x=y*x;

* Assignment Statements
int x; float y; x=y*3.0;

* Argument Evaluation
int myfn(float x); int y=myfn(3);

* Explicit Casting
int x=7; float y = ((float)x)/3;

13
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C Automatic type conversion rules

* In an expression, C converts all components in that expression to the
most “general” type, and then evaluates the expression using that
general type

* In an assignment (or argument evaluation), C converts the value of
the expression to the type of the receiver

* C converts expressions with a valid explicit cast

14
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Generality of Integer Types

unsigned long

unsigned int

unsigned short

u char

.

-8XB -2048M -32,768 128 0 127 255 32,767 65,535 2048M 4096M  8XB

char

short
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Generality of Numeric Types

Most General

A A, \!|double
A ] Mfloat

A ] Munsigned
4] 7 m Iong Iong
Y ] Munsigned
A ] Mint int

A ] \!|unsigned
y - J[short short

- [unsigned
\!|char Uchar

Least General

16
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Converting Signed vs Unsignhed

* Bits stay exactly the same, but the bits are INTERPRETTED differently

2726 20 120127 122 |20 20
1 1 10 10 1 0

char x = -22; unsigned char w = 234;
unsigned char y=x; char z=w;
printf(“y=%d\n",y); printf(“z=%d\n",z);

// prints y=234 /] prints z=-22
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Converting Signed vs Unsignhed

* Bits stay exactly the same, but the bits are INTERPRETTED differently

2726 20 120127 122 |20 20
1 1 10 10 1 0

char x = -22; unsigned char w = 234;
unsigned char y=x; char z=w;
printf(“y=%d\n",y); printf(“z=%d\n",z;

// prints y=234 /] prints z=-22
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Demo — Sign Conversion

int main(int argc,char **argv) {

int sint=atoi(argv|[1));
unsigned int uint=sint;

printf("sint=%10d = 0B%s = O0x%x\n",sint,bitString(sint),sint);
printf("uint=%10u = 0B%s = 0x%x\n",uint,uBitString(uint),uint);
return O;
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Changing Integer Size

* Truncate or Pad on left with sign bit

27 2° 20 |20 27 22 2t 20
1 110 10 10

Fall 2019

215 214212 212 91 1210120 120 27 125 25 2° 20 22 2t 20
11 1 1 1 1 1 11 1 1 O 1 O 1 O

char x = -22;
short y=Xx;

shortw = -22;

char z=w;
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Changing Integer Size (unsigned)

* Truncate or Pad on left with sign bit (=0)

27 2° 20 |20 27 22 2t 20
1 110 10 10

Fall 2019

215 214212 212 91 1210120 120 27 125 25 2° 20 22 2t 20
o o 0o 0o 0 606 0 01 1.1 O 1 O 1 O

unsigned char x = 234;
unsigned short y=x;

unsigned short w = 234;
unsigned char z=w;
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Demo — widthConv.c

int main(int argc, char **argv) {
assert(argc>1);

int n32 = atoi(argv[1]);
long n64=n32;
short n16=n32;
char n08=n32;

unsigned int u32=n32;

unsigned long u64=u32;
unsigned short ul6=u32;
unsigned char u08=u32;

printf("n64=%10ld = 0x%016Ix\n",n64,n64);
printf("u64=%10lu = 0x%016Ix\n",u64,u64);
printf("n32=%10d = 0x%08x\n",n32,n32);
printf("'u32=%10u = 0x%08x\n",u32,u32);
printf("'n16=%10d = 0x%04hx\n",n16,n16);
printf("fu16=%10u = 0x%04hx\n",u16,ul6);
printf("n08=%10d = 0x%02hhx\n",n08,n08);
printf("u08=%10u = 0x%02hhx\n",u08,u08);
return O;
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Integer to Float

e Add .0 and convert to nearest floating point representation

int x = 1331254215;

float y=x;

printf("y=%f\n",y);

/] prints y=1331254272.000000
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Float to Integer

* Truncate at the decimal point (round towards zero)

float w=-374289.74112;
Int z=w;
printf("z=%d\n",z);

/] prints z=-374289

Fall 2019
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Demo — floatConv.c

int main(int argc, char **argv) {
assert(argc>1);

int i32=atoi(argv[1]);
float f32=atof(argv[1]);
int fi32=f32;

float if32=i32;

printf("i32=%d f32=%f fi32=%d if32=%f\n",i32,f32,fi32,if32);
return O:
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Conversion Errors

* When C converts a negative signed number to a positive number
char x = -1; unsigned char y = x; printf("y = %d\n",y);

* When C converts a wide number to a smaller width, but the number
doesn’t fit

short x=260; chary = x; printf("y = %d\n",y);

* When C truncates decimals
float x=2.7; int y=x;; printf("y = %d\n",y);
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Integer Division Pitfall

int atBats = atoi(argv[1]);
int hits = atoi(argv[2]);

float battingAverage = (hits/ atBats) * 1000.0;

printf(“"Everybody has a zero batting average?\n”);
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> [Clicker Question

unsigned int width=+38;

signed int leftX = -13;

* What gets printed? if ((leftX < 0) && (leftx + width) > 0) {
printf(“Rectangle crosses y axis\n");

5

A. No value — compiler error.
B. Rectangle crosses y axis
C. Nothing
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Explicit Casting

* Programmer tells C explicitly to perform conversion

* “cast” prefix operator: (type)expression
* Causes expression to be evaluated and then converted to the specified type

* Needed when the programmer knows better than the compiler!

* Note that casting is pretty high in operator precedence
 after parens, but before any mathematical operations

int battingAverage = ((float) hits/ atBats) * 1000;
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Resources

* Programming in C, Chapter 3, 13 (pp 325-328)

* Wikipedia Type Conversion:
https://en.wikipedia.org/wiki/Type conversion

e C Tutorial — Cast operator:
http://www.crasseux.com/books/ctutorial/The-cast-

operator.html#The%20cast%20operator

30


https://en.wikipedia.org/wiki/Type_conversion
http://www.crasseux.com/books/ctutorial/The-cast-operator.html#The%20cast%20operator

