
Binghamton

University

CS-211

Fall 2019

Attendance

Please click on A if you are here:

A. I am here today.

Binghamton

University

CS-211

Fall 2019

Data Conversion
software diversity

in action

2

Binghamton

University

CS-211

Fall 2019

Function Definition Video Review

• First Line:
• Return type

• name

• argument list

• Body
• return statement

• Declaration vs. Definition
• Right side up code

Binghamton

University

CS-211

Fall 2019

Program Design : Functions

• Break up a big problem into smaller problems

• Encapsulate each smaller problem in a function

• Keep functional boundaries clear and well defined
• Think in terms of parameters, processing, return value

• Remember, each function can only return one value

• Example: Project installment 2 Verilog infrastructure

• Fancy name: Functional Decomposition

Binghamton

University

CS-211

Fall 2019

Demo

• We are working on CAD for house plans. Our customer has asked us
to write a function, given the length and width of a wall in inches,
figure out how many linear feet of board to the nearest foot will we
need to cover the wall if the boards are 8 inches wide?

Binghamton

University

CS-211

Fall 2019

Big Picture

width

h
eigh

t

Need ceil(height/8) boards, each width wide.
Need ceil(boards * width/12) linear feet

Binghamton

University

CS-211

Fall 2019

Function Arguments?

• What values is the user willing to give us?

• What do we need to figure out the answer?

• What is the data type of each argument?

• What name will you use for each argument?
• Easy to type and remember

Note: When you implement your function, you may change your mind.
That’s OK.

Binghamton

University

CS-211

Fall 2019

Return Type?

• What type of data does your user expect you to return?

• Does the data type reflect the precision of the inputs?

Binghamton

University

CS-211

Fall 2019

Function Invocation Video Review

• Argument Expression Evaluation

• Copy arguments to parameters

• Transfer control to called function

• "Replace" invocation with returned result

• Function "side-effects" Other than just calculating return value
• Read or write to/from the terminal or a file

• Update global variables

• manage memory

• "void" functions are all about side-effects

Binghamton

University

CS-211

Fall 2019

Data Conversion

Binghamton

University

CS-211

Fall 2019

Question

• What gets printed?

A. No value – compiler error.

B. y=3.1

C. y=6

D. y=6.2

int x=2; float y=3.1;

y=y*x;

printf("y=%f\n",y);

Binghamton

University

CS-211

Fall 2019

Question

• What gets printed?

A. No value – compiler error.

B. x=6

C. x=6.0

D. x=6.2

int x=2; float y=3.1;

x=y*x;

printf("x=%f\n",x);

Binghamton

University

CS-211

Fall 2019

What happens when types are mixed?

• Mixed Type Expressions
int x; float y; x=y*x;

• Assignment Statements
int x; float y; x=y*3.0;

• Argument Evaluation
int myfn(float x); int y=myfn(3);

• Explicit Casting
int x=7; float y = ((float)x)/3;

13

Binghamton

University

CS-211

Fall 2019

C Automatic type conversion rules

• In an expression, C converts all components in that expression to the
most “general” type, and then evaluates the expression using that
general type

• In an assignment (or argument evaluation), C converts the value of
the expression to the type of the receiver

• C converts expressions with a valid explicit cast

14

Binghamton

University

CS-211

Fall 2019

Generality of Integer Types

0-128 127 255 32,767-32,768 65,535-2048M 2048M 4096M-8XB 8XB

u char

char

unsigned short

unsigned int

unsigned long

short

int

long

Binghamton

University

CS-211

Fall 2019

Generality of Numeric Types

char

unsigned

char

short

unsigned

short

int

unsigned

int

long

unsigned

long

float

double

16

Most General

Least General

Binghamton

University

CS-211

Fall 2019

Converting Signed vs Unsigned

• Bits stay exactly the same, but the bits are INTERPRETTED differently

27 26 25 24 23 22 21 20

1 1 1 0 1 0 1 0

char x = -22;
unsigned char y=x;
printf(“y=%d\n”,y);
// prints y=234

unsigned char w = 234;
char z=w;
printf(“z=%d\n”,z);
// prints z=-22

Binghamton

University

CS-211

Fall 2019

Converting Signed vs Unsigned

• Bits stay exactly the same, but the bits are INTERPRETTED differently

27 26 25 24 23 22 21 20

1 1 1 0 1 0 1 0

char x = -22;
unsigned char y=x;
printf(“y=%d\n”,y);
// prints y=234

unsigned char w = 234;
char z=w;
printf(“z=%d\n”,z;
// prints z=-22

Binghamton

University

CS-211

Fall 2019

Demo – Sign Conversion

int main(int argc,char **argv) {

int sint=atoi(argv[1]);

unsigned int uint=sint;

printf("sint=%10d = 0B%s = 0x%x\n",sint,bitString(sint),sint);

printf("uint=%10u = 0B%s = 0x%x\n",uint,uBitString(uint),uint);

return 0;

}

Binghamton

University

CS-211

Fall 2019

Changing Integer Size

• Truncate or Pad on left with sign bit

27 26 25 24 23 22 21 20

1 1 1 0 1 0 1 0

215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0

char x = -22;
short y=x;

short w = -22;
char z=w;

Binghamton

University

CS-211

Fall 2019

Changing Integer Size (unsigned)

• Truncate or Pad on left with sign bit (=0)

27 26 25 24 23 22 21 20

1 1 1 0 1 0 1 0

215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0

unsigned char x = 234;
unsigned short y=x;

unsigned short w = 234;
unsigned char z=w;

Binghamton

University

CS-211

Fall 2019

Demo – widthConv.c

int main(int argc, char **argv) {
assert(argc>1);

int n32 = atoi(argv[1]);
long n64=n32;
short n16=n32;
char n08=n32;

unsigned int u32=n32;
unsigned long u64=u32;
unsigned short u16=u32;
unsigned char u08=u32;

printf("n64=%10ld = 0x%016lx\n",n64,n64);
printf("u64=%10lu = 0x%016lx\n",u64,u64);
printf("n32=%10d = 0x%08x\n",n32,n32);
printf("u32=%10u = 0x%08x\n",u32,u32);
printf("n16=%10d = 0x%04hx\n",n16,n16);
printf("u16=%10u = 0x%04hx\n",u16,u16);
printf("n08=%10d = 0x%02hhx\n",n08,n08);
printf("u08=%10u = 0x%02hhx\n",u08,u08);
return 0;

}

Binghamton

University

CS-211

Fall 2019

Integer to Float

• Add .0 and convert to nearest floating point representation

int x = 1331254215;
float y=x;
printf("y=%f\n",y);
// prints y=1331254272.000000

Binghamton

University

CS-211

Fall 2019

Float to Integer

• Truncate at the decimal point (round towards zero)

float w=-374289.74112;
int z=w;
printf("z=%d\n",z);
// prints z=-374289

Binghamton

University

CS-211

Fall 2019

Demo – floatConv.c

int main(int argc, char **argv) {
assert(argc>1);

int i32=atoi(argv[1]);
float f32=atof(argv[1]);
int fi32=f32;
float if32=i32;

printf("i32=%d f32=%f fi32=%d if32=%f\n",i32,f32,fi32,if32);
return 0;

}

Binghamton

University

CS-211

Fall 2019

Conversion Errors

• When C converts a negative signed number to a positive number

char x = -1; unsigned char y = x; printf(“y = %d\n”,y);

• When C converts a wide number to a smaller width, but the number
doesn’t fit

short x=260; char y = x; printf(“y = %d\n”,y);

• When C truncates decimals

float x=2.7; int y=x;; printf(“y = %d\n”,y);

Binghamton

University

CS-211

Fall 2019

Integer Division Pitfall

int atBats = atoi(argv[1]);

int hits = atoi(argv[2]);

float battingAverage = (hits/ atBats) * 1000.0;

printf(“Everybody has a zero batting average?\n”);

Binghamton

University

CS-211

Fall 2019

Question

• What gets printed?

A. No value – compiler error.

B. Rectangle crosses y axis

C. Nothing

unsigned int width=+8;
signed int leftX = -13;
if ((leftX < 0) && (leftx + width) > 0) {

printf(“Rectangle crosses y axis\n”);
}

Binghamton

University

CS-211

Fall 2019

Explicit Casting

• Programmer tells C explicitly to perform conversion

• “cast” prefix operator: (type)expression
• Causes expression to be evaluated and then converted to the specified type

• Needed when the programmer knows better than the compiler!

• Note that casting is pretty high in operator precedence
• after parens, but before any mathematical operations

int battingAverage = ((float) hits/ atBats) * 1000;

29

Binghamton

University

CS-211

Fall 2019

Resources

• Programming in C, Chapter 3, 13 (pp 325-328)

• Wikipedia Type Conversion:
https://en.wikipedia.org/wiki/Type_conversion

• C Tutorial – Cast operator:
http://www.crasseux.com/books/ctutorial/The-cast-
operator.html#The%20cast%20operator

30

https://en.wikipedia.org/wiki/Type_conversion
http://www.crasseux.com/books/ctutorial/The-cast-operator.html#The%20cast%20operator

