Binghamton CS-211

University Fall 2019

Functions (¢

The Basis of C

Binghamton CS-211

University Fall 2019

1> 1Clicker Attendance

Please click on A if you are here:

A. | am here today.

Binghamton CS-211

University Fall 2019

Exercise Review: HighLow

Write a computer program that selects a random number between O
and 100. Then prompt the user to enter a guess of that number. As
long as the user has not guessed the number, tell her whether her
guess is greater than or less than the target number, then ask for
another guess.

Binghamton CS-211

University Fall 2019

Video Review: If Statements

e Sequential Control Flow
e Simple “if” T preem— | e

1513 rt=7]

5 Apps E] Tom Bartenstein m €S-211 Fall 2019 E Portal W Wikipedia, the free... Language Reference Binghamton Univer... Miscellaneous GitHub Classroom 9 Bookmarks Other bookmarks

L]
If/t h e n/e | S e Pr\\‘(‘l{'ﬁ‘nf‘)\\ B 10603.201990: Fall 2019 - Programming | Engineers (CS-211-A 0) Controllf_final haranarordiih 4 * '<.. /" i Help - signout

L YA O, Sk

c & https://binghamton.hosted. panopto.com/Pano

#include <stdio.h>

* Compound Conditions =™

ffThen/Else Statement

Nested if/then/else ™ = ..

ANDed condition Solution

int main() {

printf("Enter an integer :> ");
int x;
scanf(” %d",&x);

OO EORNa

if (x<0)
printf("Your input was negativein™);

. - .
. Nested iffthen/else Solution 7:4 -' elser R .
. printf("Your input was positive or zeroln™);

Ambi Nested If Statements
Ampiguous Nested IT Statements printf("Now you know!\n");

f/Else if Sclution

o if /else if construct

Calculator Problem

return 0;

Calculator Else If Solution

* switch statements Y | ml

quadrant
coordinate s in.

Binghamton CS-211

University Fall 2019

> iClicker Question

inta=1:; int b=3;

if (++a>b)

* What gets printed?|if (a < b && a++==Db) printf(“a equals b ”);
else printf("fa not equal to b? “);

printf(“a is %d, b is %d\n",a,b);

ais3,bis3
aequalsbais3,bis3

a notequaltob?ais3,bis3
.ais2,bis3

o0 wp

Binghamton CS-211

University Fall 2019

Video Review: Control Flow: Loops

* while loops
* nested while loops <~ - |

&) @ https://binghamton.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=3aa889b5-04db-4cde-b330-aaa400217488 W @ o

i Apps G] Tom Bartenstein m CS-211 Fall 2019 E Portal W Wikipedia, the free.. Language Reference Binghamton Univer. Miscellaneous () GitHub Classroom Y Bookmarks Other bookmarks

[] (GHAMTON R
PI\N}J\“}'\,\:\H(?? B 10603.201990: Fall 2019 - Programming | Engineers (CS-211-A 0) ControlFlowLoop y r ¥ 8 < 2/ it Help~ Sign out
° i 3 . z =nla ~ -
* do/while loops ,

“while" loops 0:25
3 Loop Control can be non-sequential 3:22 int main() {
] . ° intn;inti;
* InTInite loops .
printf("How high do you want to count? :> *);
for" loops 8:09 G scanf(" %d",&n);
do while” loops 11:31 3 i=1;
PY e 1 d ‘ I while(i<=n) {
r a a n CO n I n u e nfinite Loops 14:44 o " printf("and a %d\n",i);
- i+

break” keyword 17:52 }

printf("l can count to %d!\n",n);

continue" keyword 20:46

Binghamton CS-211

University Fall 2019

Class Exercise: ldentify Duplicates

Given an array of grades, check to see if there are any duplicate grades.
If so, write a message that specifies that index i is a duplicate of index j,
where i<j. The array is declared as “int grades[100]”, so valid indexes
are 0 to 99, and each element of the array can be accessed as
“gradesli]”, where 0<=i<100.

Binghamton CS-211

University Fall 2019

What Is a function?

* Have you ever needed to convert from C° to F°?

* Demo:
http://www.pronk.com/samples/projects/021SFunction Machine/Fu
nction Machine.HTML

http://www.pronk.com/samples/projects/021$Function_Machine/Function_Machine.HTML

CS-211
Fall 2019

Binghamton
University

Function in C

/// L;[“iv “,f"‘”ﬂ / ""‘;/“ /

~~

iy

Wil

U

float cent_to_far(float t) {
return (t*9.0)/5.0+32;

//////A///////A

l/////////////////é/

CS-211
Fall 2019

Binghamton

University

Functions for Abstraction

* Function Prototype: float cent_to_far(float t)
* Function Behavior: Convert Centigrade to Fahrenheit
* Function Embodiment: WHO CARES?

* Aslong as it works, we can ignore the embodiment!
* Code it once, test it, and then use it lots of times!

gent _*° B

10

Binghamton CS-211

University Fall 2019

Functions: Function Definition

e Watch the video, available on myCourses
¢ Content Function_Definition

& 5 C © Notsecure | pronk.com/samples/projects/021$Function_Machine/Function_Machine. HTML %« ® O
.
[] VI d e OS i Apps m Tom Bartenstein m CS-211 Fall 2019 m CS-140 Fall 2019 E Portal Language Reference Binghamton Univer... Miscellaneous Q GitHub Classroom % Bookmarks Other bookmarks

* 8. Functions

| 3 @ ©.__00:14/ 1948

Binghamton CS-211

University Fall 2019

Functions: Function Invocation

e Watch the video, available on myCourses
* Content PR

C @& binghamton.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=ab2148d6-fa08-4 fe5-aaca002ffb99 v @

B My Dashboard | myBinghamton X Fall 2019 - Programming | Engine X [if Function_Invocation X +

.
* Videos :
5% Apps m Tom Bartenstein B CS-211 Fall 2019 m CS-140 Fall 2019 ﬂ Piazza « Ask. Answe. E Portal

Language Reference Binghamton Univer.. Miscellaneous » Other bookmarks

RS ——)) N ,
BINGHAMTON M > Function_Invocation 3 & < / i Help- Signout

* 8. Functions

Introduction 0:00

- Invoking cent_to_far 0:57
Discussion
& . ; "

— Evaluating Argument Expressions 1:49 FUnCtion |nvocati0n
Bookmarks Running the body of the function 2:20

Return Values from the Function 2:41

More complicated Argument Expressions 318

Invoking a Library Function (printf) 4:48

Argument Expression Evaluation Order 527

> @ 005 @ 001 wg) (@ X - . v

Speed Quality

g qGate.c s £l gradebook_10603...zip Show all X

Binghamton CS-211

University Fall 2019

Variable Scope

13

Binghamton CS-211

University Fall 2019

Scope

The places in your code that can read and/or write a variable.

e Scope starts at the location where you declare the variable

* There may be holes in the scope!

* Scope ends at the end of the block in which the declare occurs
e Usually, the function in which the variable was declared

14

Binghamton CS-211

University Fall 2019

Simple Example

Block in which j is declared

#include <stdio.h>

int main(int argc, char **argv) {

int j;

for(j=0; j<argc; j++) {
printf(“Argument %d = %s\n”,j,argv[jl);

}
return O; \

| "

Binghamton CS-211

University Fall 2019

“Block” is Usually a Function

* Scope of variable defined inside a function is “local” to that function

e But... you can define a variable inside a sub-block of a function

16

Binghamton CS-211

University Fall 2019

Internal Example

Block in which k is declared

#include <stdio.h>
int main(int argc, char **argv) {

int j;
for(j=0; j<argc; j++) {
int k=j+1;
printf("Argument %d = %s\n”,k,argv@;
}
return O;

Binghamton CS-211

University Fall 2019

Global Variable

* Declared outside of a block (including functions!)
e Scope is from declaration to the end of the C file!

18

Binghamton CS-211

University Fall 2019

Global Example T

#include <stdio.h>
iInt nc=0;
int myfunc(int n) { nc++; return n; }
int main(int argc, char **argv) {
Int J;
for(j=0; j<argc; j++) myFunc(2);
printf(*myfunc called %d times\n”,nc);
return O;

} T~

— |

Binghamton CS-211

Fall 2019

University

Local Variable Pros & Cons

Advantages Disadvantages

e Simple and intuitive * Not remembered from call to

» When you code a function, you call
don’t need to worry about what ¢ Cannot communicate outside of
you're caller is doing function

* Each invocation gets its own
version of local variables

20

Binghamton CS-211

University Fall 2019

Global Variable Pros & Cons

Advantages Disadvantages

e Simple and intuitive * Increases the “outside”

e Enables functions to information a function needs to
communicate data with each be aware of (binding)
other * Prevents re-use of functions

e Remembers between function e Remembers between function
calls as well as within function calls as well as within function

calls calls

21

Binghamton CS-211

University Fall 2019

Variable Class

* Automatic
* Created/Initialized on entry to block
* Destroyed on exit from block

*Static
* Created/Initialized when program starts
* Destroyed when program ends

Binghamton CS-211

University Fall 2019

Default Class

* Function/Block Variables are automatic
* Created/Initialized on entry to that function/block
* Deleted when that function/block ends

* Override class of Function/Block Variables by using the “static” keyword
* Created/Initialized when the program starts
* Deleted when the program ends
* Does not change the scope — scope is still inside the function!

* Global Variables are Static
* Created/Initialized when the program starts
* Deleted when the program ends
e “Automatic” and “static” behave exactly the same — the “block” is the program!

23

Binghamton CS-211

University Fall 2019

Example Local Static

char * flipflop() {
static int flip=1;
if (flip) { flip=0; return “flip”; }
else { flip=1; return “flop”; }

}
for(i=0;i<8;i++) printf("%s “,flipflop());

flip flop flip flop flip flop flip flop

24

Binghamton CS-211
Fall 2019

University

BAD FORM : Pseudo-Globals

* It is legal in C to nest a function inside another function

 This allows the variables in the outside function to be visible (in
scope) for the inside function

* C Coders frown on this practice!
* Nested functions have other complications
* Nested functions cannot be re-used
* It’s ugly and confusing

25

Binghamton CS-211

University Fall 2019

Example Nested Functions

int main(int argc, char **argv) {
char firstArgLetter(int i) {
return argv[i][0];

§

Int J;

for(j=0;j<argc;j++) printf("Arg start: %c\n”,
firstArglLetter(j));

return O;

26

Binghamton CS-211

University Fall 2019

The “main” function

e Every C program must have a “main” function
* When C program is run, the OS invokes the main function
* When the main function returns, program ends

e Return value “int”
e Return value O indicates program worked OK
* Return value other than O indicates program failed

* main function arguments — stay tuned
* main function may invoke lower level functions
* For now: int main() { ... ; return O; }

27

Binghamton CS-211

University Fall 2019

Arguments to main

* When the operating system calls the “main” function, it:

 parses the command line, splitting at “white space” (blanks, tabs)
>|/convertTemp 21.3# @@

* Counts the number of blank delimited words: argc=4

* Creates an array of “words” or strings (really an array of arrays)

“/convertTemp” h
elt] K Size=a

CS-211

Binghamton
Fall 2019

University

Parameters of main

* Typically use argc and argv as the names of the parameters to main
int main(int argc, char **argv) { ...
e drgc argument count — the size of the argv array

e argv argument value (or vector) - a list of strings

* Each string is an array of characters
e So argv is an array of arrays of characters

« Almost (char[])[] argv —argv is an array of (array of characters)
* (note: not char[][] argv — not a two dimensional array of characters!)

 Can reference each string as argvl[i]
 Can reference individual letters as argv(il[j] really (argv[i])[j]

Binghamton CS-211

University Fall 2019

Demo

* We are working on CAD for house plans. Our customer has asked us
to write a function, given the length and width of a wall in inches,
figure out how many linear feet of board to the nearest foot will we
need to cover the wall if the boards are 8 inches wide?

Binghamton CS-211

University Fall 2019

Big Picture

= ySloy)

(e \yjdth eeee———)

Need ceil(height/8) boards, each width wide.
Need ceil(boards * width/12) linear feet

Binghamton CS-211

University Fall 2019

Function Arguments?

 What values is the user willing to give us?
* What do we need to figure out the answer?
 What is the data type of each argument?

* What name will you use for each argument?
e Easy to type and remember

Note: When you implement your function, you may change your mind.
That’s OK.

Binghamton CS-211

University Fall 2019

Return Type”?

* What type of data does your user expect you to return?
* Does the data type reflect the precision of the inputs?

Binghamton CS-211

University Fall 2019

Resources

* Programming in C, Chapter 7 up to “Functions Calling Functions
Calling ...” (p. 130)

* YouTube: Meat-a-Morphis — Introduction to Functions
(https://www.youtube.com/watch?v=VUTXsPFx-qQ)

» WikiPedia: Subroutine (https://en.wikipedia.org/wiki/Subroutine)

* WikiPedia: C Standard Library:
(https://en.wikipedia.org/wiki/C standard library)

* C Library Reference Guide (https://en.cppreference.com/w/c/header)

34

https://www.youtube.com/watch?v=VUTXsPFx-qQ
https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/C_standard_library
https://en.cppreference.com/w/c/header

Binghamton CS-211

University Fall 2019

Function_Definition
&« 3 C @ Notsecure | 1$Function Machine/Function Machine HTML < . [+]

apps [Tom Bartenstein [CS-211Fanz01s [CS-140Fan2019 P Portal [Language Reference || Singhamtan Unives Miscellineous () Github Classioom d Bookmarks Other bookmarks

(°C

50
e
g ®
25
=50 —
5 ¥
- ‘
— i it

(@ HELP

Functions: Function Definition

Summary Notes

CS-211
Fall 2019

C Function Anatomy/m

"double[cent_to_far(double t)

return (t¥9.0)/5.0+32;
} Parameter(s)

Binghamton CS-211

University Fall 2019

Function Arguments or Parameters

* Almost like Local Variable Declarations with no initialization
* Comma separated list of “variables” passed in to the function
e Each entry specifies the type and name of one parameter

* When a function is invoked, the invoker specifies the initial values of
the arguments

* The parameter can be referenced by its name in the function body

* Values passed are COPIES of the arguments
* Changing a parameter does not change the caller’s variable!

37

Binghamton CS-211

University Fall 2019

Argument vs. Parameter

* Really the same thing... data passed into a function to work on
* The difference is the point of view...

* Caller’s point of view:|Arguments

float ftemp=cent_to_far(28.3);

e Called function (“callee”) point of view: parameter]

float cent_to_far(fl
return (t*9.0)/5.0+32;

CS-211
Fall 2019

Binghamton

University

Function Body

e List of C statements that define how the function works
* Typically works on arguments to produce result

* May have “side effects” (other than producing a result)

* Write messages to the console
e Read information from a file
* Change a global variable value

* Result is specified by a “return” statement

Binghamton CS-211

University Fall 2019

Function Return Value

* Type specified in function definition
* Must specify some return type

* May specify “void” to indicate function returns nothing
* In this case, no return statement is required, or no value: return;

 Value specified in body by return statement
return value;

* where value is an expression that evaluates
to the return type

40

Binghamton CS-211

University Fall 2019

Generalizing Temperature Conversion

73 212 ="Water Aoils

310 a7 99 —Body Temp
2

* What if we want to support conversion from Cto F? [% 4 3 Themieme
* What about C to K (Kelvin) 109 -y
*OrKtoF

7 -194 -320 = Afr Freeres

o
(XX} a 273 460 = Absolute Zemo

* Is there a general function that handles temperature conversion from
any scale to any scale?

Binghamton CS-211

University Fall 2019

Facts about Temperatures

m Freezing Point | Boiling Point

Farenheit 32 212
Centigrade 0 100
Kelvin 273 373

Interpolation: Find distance from freezing, convert
distance to new scale, then add freezing point.

Binghamton CS-211

University Fall 2019

Conversion Formulas

deltag. . = boiling(scale) — freezing(scale)

fromFreezings = tf — freezing(f)

delta;

fromFreezing, = fromFreezing, X
deltas

t = fromFreezing, + freezing(t)

Binghamton CS-211

University Fall 2019

C Declare before Use Rule

* In C, you cannot invoke a function which has not been “declared”
* One way to declare a function is to fully define the function

* This causes “upside down” code
* Lowest Level functions are first in the file
* Highest Level function (main) is last in the file

44

Binghamton CS-211

University Fall 2019

Example of Upside Down Code

float freezingPoint(char scale) {...}

float boilingPoint(char scale) { ... }

int validScale(char scale) { ... }

float convertTemp(...) {

...validScale(‘C’); boilingPoint(‘C’);
freezingPoint(‘C’);... }

int main(int argc, char **argv) {

... convertTemp(‘C2F’,17.3) ...

}

45

Binghamton CS-211

University Fall 2019

Function Prototype Declare

* Function Prototype: float freezingPoint(char scale)
* Prototype consists of return type, function name, & parameter list

* We can declare a function by specifying the prototype;
* Followed by a semi-colon

e Still need full function definition somewhere else
* Enables “Right Side Up” coding
* Function Prototypes at the top of the file

* Function definition for top level function (main) next
* Then function definitions for lower level functions

46

Binghamton CS-211

University Fall 2019
Example of RightSide Up Code
ﬁoat convertTemp(char scale,...); g
int validScale(char scale);)
float boilingPoint(char scale); %
\float freezingPoint(char scale); aJ
/lnt main(int argc, char **argv) { ... } U\
float convertTemp(char scale,...) { ... }%
int validScale(char scale) { ... } =
float boilingPoint(char scale) { ... } §
Qloat freezingPoint(char scale) {...} /

47

Binghamton CS-211

University Fall 2019

Writing Functions in C

1.
2.
3.
4.
5.
6.
/.

Get the big picture... what are we trying to do?
Choose a function name

ldentify the argument list

Figure out the return type

Write the function prototype

Implement the function

Test the function

Binghamton CS-211

M Inbox - tbartens@binghamton.e: X | [My Dashboard | myBinghamton X | Fall 2019 - Programming | Engin: X [Function_Invocation

UniverSity C @ binghamton hosted panopto.com/Panopto/Pages/Viewer.a 148d6-fa08-4772-8fe5-aaca002ffbg * @ : Fall 2019

CS-211Fall 2019) CS-140 Fall 2019 [g] Piazza Ed portal

BINGHAMTON B > Function_Invocation ¥ & < / il Help- Signout

* Apps 8] Tom Bartenstein « Ask. Answe. Language Reference Binghamton Univer Miscellaneous Other bookmarks

Introduction

Invoking cent_to_far

Evaluating Argument Expressions

Function Invocation

Running the body of the function

Return Values from the Function

More complicated Argument Expressions
Invoking a Library Function (printf)

Argument Expression Evaluation Order

- ees v
Quality

T qoatec ~ i gradebook 10603..zip ~ showall X

Functions: Function Invocation

Summary Notes

Binghamton CS-211

University Fall 2019

Function Invocation

Invoke a function in a C expression by specifying:

function _name (argument_expression_list)

function_name : name of a previously declared function

argument_expression_list : comma separated list of expressions to be used as arguments

When a function is invoked, C will....
1. evaluate argument expressions,
2. Copy argument values into parameters
3. invoke the specified function (run it’s body)
4. conceptually replace the function invocation with the returned value

float warmer=cent_to_far(ctemp*1.10);

50

