
Binghamton

University

CS-211

Fall 2019

Functions
The Basis of C

1

Binghamton

University

CS-211

Fall 2019

Attendance

Please click on A if you are here:

A. I am here today.

Binghamton

University

CS-211

Fall 2019

Exercise Review: HighLow

Write a computer program that selects a random number between 0
and 100. Then prompt the user to enter a guess of that number. As
long as the user has not guessed the number, tell her whether her
guess is greater than or less than the target number, then ask for
another guess.

Binghamton

University

CS-211

Fall 2019

Video Review: If Statements

• Sequential Control Flow

• Simple “if”

• if/then/else

• Compound Conditions

• Nested if/then/else
• else ambiguity

• if /else if construct

• switch statements

Binghamton

University

CS-211

Fall 2019

Question

• What gets printed?

A. a is 3, b is 3

B. a equals b a is 3, b is 3

C. a not equal to b? a is 3, b is 3

D. a is 2, b is 3

int a=1; int b=3;

if (++a>b)

if (a < b && a++==b) printf(“a equals b ”);

else printf(“a not equal to b? “);

printf(“a is %d, b is %d\n”,a,b);

Binghamton

University

CS-211

Fall 2019

Video Review: Control Flow: Loops

• while loops
• nested while loops

• for loops

• do/while loops

• infinite loops

• break and continue

Binghamton

University

CS-211

Fall 2019

Class Exercise: Identify Duplicates

Given an array of grades, check to see if there are any duplicate grades.
If so, write a message that specifies that index i is a duplicate of index j,
where i<j. The array is declared as “int grades[100]”, so valid indexes
are 0 to 99, and each element of the array can be accessed as
“grades[i]”, where 0<=i<100.

Binghamton

University

CS-211

Fall 2019

What is a function?

• Have you ever needed to convert from C° to F°?

• Demo:
http://www.pronk.com/samples/projects/021$Function_Machine/Fu
nction_Machine.HTML

8

http://www.pronk.com/samples/projects/021$Function_Machine/Function_Machine.HTML

Binghamton

University

CS-211

Fall 2019

Function in C

float cent_to_far(float t) {

return (t*9.0)/5.0+32;

}

9

Binghamton

University

CS-211

Fall 2019

Functions for Abstraction

• Function Prototype: float cent_to_far(float t)

• Function Behavior: Convert Centigrade to Fahrenheit

• Function Embodiment: WHO CARES?
• As long as it works, we can ignore the embodiment!

• Code it once, test it, and then use it lots of times!

10

Binghamton

University

CS-211

Fall 2019

Functions: Function Definition

• Watch the video, available on myCourses
• Content

• Videos
• 8. Functions

Binghamton

University

CS-211

Fall 2019

Functions: Function Invocation

• Watch the video, available on myCourses
• Content

• Videos
• 8. Functions

Binghamton

University

CS-211

Fall 2019

Variable Scope

13

Binghamton

University

CS-211

Fall 2019

Scope

The places in your code that can read and/or write a variable.

• Scope starts at the location where you declare the variable

• There may be holes in the scope!

• Scope ends at the end of the block in which the declare occurs
• Usually, the function in which the variable was declared

14

Binghamton

University

CS-211

Fall 2019

Simple Example

#include <stdio.h>

int main(int argc, char **argv) {

int j;

for(j=0; j<argc; j++) {

printf(“Argument %d = %s\n”,j,argv[j]);

}

return 0;

}

15

Block in which j is declared

Scope of j

Binghamton

University

CS-211

Fall 2019

“Block” is Usually a Function

• Scope of variable defined inside a function is “local” to that function

• But… you can define a variable inside a sub-block of a function

16

Binghamton

University

CS-211

Fall 2019

Internal Example

#include <stdio.h>

int main(int argc, char **argv) {

int j;

for(j=0; j<argc; j++) {

int k=j+1;

printf(“Argument %d = %s\n”,k,argv[j]);

}

return 0;

}

17

Block in which k is declared

Scope of k

Binghamton

University

CS-211

Fall 2019

Global Variable

• Declared outside of a block (including functions!)

• Scope is from declaration to the end of the C file!

18

Binghamton

University

CS-211

Fall 2019

Global Example

#include <stdio.h>

int nc=0;

int myfunc(int n) { nc++; return n; }

int main(int argc, char **argv) {

int j;

for(j=0; j<argc; j++) myFunc(2);

printf(“myfunc called %d times\n”,nc);

return 0;

}

19

Block in which nc is declared

Scope of nc

Binghamton

University

CS-211

Fall 2019

Local Variable Pros & Cons

Advantages

• Simple and intuitive

• When you code a function, you
don’t need to worry about what
you’re caller is doing

• Each invocation gets its own
version of local variables

Disadvantages

• Not remembered from call to
call

• Cannot communicate outside of
function

20

Binghamton

University

CS-211

Fall 2019

Global Variable Pros & Cons

Advantages

• Simple and intuitive

• Enables functions to
communicate data with each
other

• Remembers between function
calls as well as within function
calls

Disadvantages

• Increases the “outside”
information a function needs to
be aware of (binding)

• Prevents re-use of functions

• Remembers between function
calls as well as within function
calls

21

Binghamton

University

CS-211

Fall 2019

Variable Class

•Automatic
•Created/Initialized on entry to block
•Destroyed on exit from block

•Static
•Created/Initialized when program starts
•Destroyed when program ends

22

Binghamton

University

CS-211

Fall 2019

Default Class

• Function/Block Variables are automatic
• Created/Initialized on entry to that function/block
• Deleted when that function/block ends

• Override class of Function/Block Variables by using the “static” keyword
• Created/Initialized when the program starts
• Deleted when the program ends
• Does not change the scope – scope is still inside the function!

• Global Variables are Static
• Created/Initialized when the program starts
• Deleted when the program ends
• “Automatic” and “static” behave exactly the same – the “block” is the program!

23

Binghamton

University

CS-211

Fall 2019

Example Local Static

char * flipflop() {

static int flip=1;

if (flip) { flip=0; return “flip”; }

else { flip=1; return “flop”; }

}

for(i=0;i<8;i++) printf(“%s “,flipflop());

flip flop flip flop flip flop flip flop

24

Binghamton

University

CS-211

Fall 2019

BAD FORM : Pseudo-Globals

• It is legal in C to nest a function inside another function

• This allows the variables in the outside function to be visible (in
scope) for the inside function

• C Coders frown on this practice!
• Nested functions have other complications

• Nested functions cannot be re-used

• It’s ugly and confusing

25

Binghamton

University

CS-211

Fall 2019

int main(int argc, char **argv) {

char firstArgLetter(int i) {

return argv[i][0];

}

int j;

for(j=0;j<argc;j++) printf(“Arg start: %c\n”,

firstArgLetter(j));

return 0;

}

Example Nested Functions

26

Binghamton

University

CS-211

Fall 2019

The “main” function

• Every C program must have a “main” function

• When C program is run, the OS invokes the main function

• When the main function returns, program ends

• Return value “int”
• Return value 0 indicates program worked OK

• Return value other than 0 indicates program failed

• main function arguments – stay tuned

• main function may invoke lower level functions

• For now: int main() { … ; return 0; }

27

Binghamton

University

CS-211

Fall 2019

Arguments to main

• When the operating system calls the “main” function, it:

• parses the command line, splitting at “white space” (blanks, tabs)
>./convertTemp 21.3 F C

• Counts the number of blank delimited words: argc=4

• Creates an array of “words” or strings (really an array of arrays)

argv[0] “./convertTemp”

argv[1] “21.3”

argv[2] “F”

argv[3] “C”

Size=4

Binghamton

University

CS-211

Fall 2019

Parameters of main

• Typically use argc and argv as the names of the parameters to main

int main(int argc, char **argv) { …

• argc argument count – the size of the argv array

• argv argument value (or vector) - a list of strings
• Each string is an array of characters

• So argv is an array of arrays of characters

• Almost (char[])[] argv – argv is an array of (array of characters)
• (note: not char[][] argv – not a two dimensional array of characters!)

• Can reference each string as argv[i]

• Can reference individual letters as argv[i][j] really (argv[i])[j]

Binghamton

University

CS-211

Fall 2019

Demo

• We are working on CAD for house plans. Our customer has asked us
to write a function, given the length and width of a wall in inches,
figure out how many linear feet of board to the nearest foot will we
need to cover the wall if the boards are 8 inches wide?

Binghamton

University

CS-211

Fall 2019

Big Picture

width

h
eigh

t

Need ceil(height/8) boards, each width wide.
Need ceil(boards * width/12) linear feet

Binghamton

University

CS-211

Fall 2019

Function Arguments?

• What values is the user willing to give us?

• What do we need to figure out the answer?

• What is the data type of each argument?

• What name will you use for each argument?
• Easy to type and remember

Note: When you implement your function, you may change your mind.
That’s OK.

Binghamton

University

CS-211

Fall 2019

Return Type?

• What type of data does your user expect you to return?

• Does the data type reflect the precision of the inputs?

Binghamton

University

CS-211

Fall 2019

Resources

• Programming in C, Chapter 7 up to “Functions Calling Functions
Calling …” (p. 130)

• YouTube: Meat-a-Morphis – Introduction to Functions
(https://www.youtube.com/watch?v=VUTXsPFx-qQ)

• WikiPedia: Subroutine (https://en.wikipedia.org/wiki/Subroutine)

• WikiPedia: C Standard Library:
(https://en.wikipedia.org/wiki/C_standard_library)

• C Library Reference Guide (https://en.cppreference.com/w/c/header)

34

https://www.youtube.com/watch?v=VUTXsPFx-qQ
https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/C_standard_library
https://en.cppreference.com/w/c/header

Binghamton

University

CS-211

Fall 2019

Functions: Function Definition
Summary Notes

Binghamton

University

CS-211

Fall 2019

C Function Anatomy

double cent_to_far(double t) {

return (t*9.0)/5.0+32;

}

36

Name

Body

Parameter(s)

Return Type

Binghamton

University

CS-211

Fall 2019

Function Arguments or Parameters

• Almost like Local Variable Declarations with no initialization

• Comma separated list of “variables” passed in to the function

• Each entry specifies the type and name of one parameter

• When a function is invoked, the invoker specifies the initial values of
the arguments

• The parameter can be referenced by its name in the function body

• Values passed are COPIES of the arguments
• Changing a parameter does not change the caller’s variable!

37

Binghamton

University

CS-211

Fall 2019

Argument vs. Parameter

• Really the same thing… data passed into a function to work on

• The difference is the point of view…
• Caller’s point of view: Arguments

float ftemp=cent_to_far(28.3);

• Called function (“callee”) point of view: parameter

float cent_to_far(float t) {

return (t*9.0)/5.0+32;

Binghamton

University

CS-211

Fall 2019

Function Body

• List of C statements that define how the function works

• Typically works on arguments to produce result

• May have “side effects” (other than producing a result)
• Write messages to the console

• Read information from a file

• Change a global variable value

• Result is specified by a “return” statement

39

Binghamton

University

CS-211

Fall 2019

Function Return Value

• Type specified in function definition
• Must specify some return type

• May specify “void” to indicate function returns nothing
• In this case, no return statement is required, or no value: return;

• Value specified in body by return statement

return value;

• where value is an expression that evaluates
to the return type

40

Binghamton

University

CS-211

Fall 2019

Generalizing Temperature Conversion

• What if we want to support conversion from C to F?

• What about C to K (Kelvin)

• Or K to F

• …

• Is there a general function that handles temperature conversion from
any scale to any scale?

Binghamton

University

CS-211

Fall 2019

Facts about Temperatures

Scale Freezing Point Boiling Point

Farenheit 32 212

Centigrade 0 100

Kelvin 273 373

…. … …

Interpolation: Find distance from freezing, convert
distance to new scale, then add freezing point.

Binghamton

University

CS-211

Fall 2019

Conversion Formulas

𝑑𝑒𝑙𝑡𝑎𝑠𝑐𝑎𝑙𝑒 = 𝑏𝑜𝑖𝑙𝑖𝑛𝑔 𝑠𝑐𝑎𝑙𝑒 − 𝑓𝑟𝑒𝑒𝑧𝑖𝑛𝑔 𝑠𝑐𝑎𝑙𝑒

𝑓𝑟𝑜𝑚𝐹𝑟𝑒𝑒𝑧𝑖𝑛𝑔𝑓 = 𝑡𝑓 − 𝑓𝑟𝑒𝑒𝑧𝑖𝑛𝑔(𝑓)

𝑓𝑟𝑜𝑚𝐹𝑟𝑒𝑒𝑧𝑖𝑛𝑔𝑡 = 𝑓𝑟𝑜𝑚𝐹𝑟𝑒𝑒𝑧𝑖𝑛𝑔𝑓 ×
𝑑𝑒𝑙𝑡𝑎𝑡

𝑑𝑒𝑙𝑡𝑎𝑓

𝑡𝑡 = 𝑓𝑟𝑜𝑚𝐹𝑟𝑒𝑒𝑧𝑖𝑛𝑔𝑡 + 𝑓𝑟𝑒𝑒𝑧𝑖𝑛𝑔(𝑡)

Binghamton

University

CS-211

Fall 2019

C Declare before Use Rule

• In C, you cannot invoke a function which has not been “declared”

• One way to declare a function is to fully define the function

• This causes “upside down” code
• Lowest Level functions are first in the file

• Highest Level function (main) is last in the file

44

Binghamton

University

CS-211

Fall 2019

Example of Upside Down Code

float freezingPoint(char scale) {…}

float boilingPoint(char scale) { … }

int validScale(char scale) { … }

float convertTemp(…) {

…validScale(‘C’); boilingPoint(‘C’);

freezingPoint(‘C’);… }

int main(int argc, char **argv) {

… convertTemp(‘C2F’,17.3) …

}

45

Binghamton

University

CS-211

Fall 2019

Function Prototype Declare

• Function Prototype: float freezingPoint(char scale)

• Prototype consists of return type, function name, & parameter list

• We can declare a function by specifying the prototype;
• Followed by a semi-colon

• Still need full function definition somewhere else

• Enables “Right Side Up” coding
• Function Prototypes at the top of the file

• Function definition for top level function (main) next

• Then function definitions for lower level functions

46

Binghamton

University

CS-211

Fall 2019

Example of RightSide Up Code
float convertTemp(char scale,…);

int validScale(char scale);

float boilingPoint(char scale);

float freezingPoint(char scale);

int main(int argc, char **argv) { … }

float convertTemp(char scale,…) { … }

int validScale(char scale) { … }

float boilingPoint(char scale) { … }

float freezingPoint(char scale) {…}

47

D
eclaratio

n
s

D
efin

itio
n

s

Binghamton

University

CS-211

Fall 2019

Writing Functions in C

1. Get the big picture… what are we trying to do?

2. Choose a function name

3. Identify the argument list

4. Figure out the return type

5. Write the function prototype

6. Implement the function

7. Test the function

Binghamton

University

CS-211

Fall 2019

Functions: Function Invocation
Summary Notes

Binghamton

University

CS-211

Fall 2019

Function Invocation
• Invoke a function in a C expression by specifying:

function_name (argument_expression_list)
• function_name : name of a previously declared function

• argument_expression_list : comma separated list of expressions to be used as arguments

• When a function is invoked, C will….

1. evaluate argument expressions,

2. Copy argument values into parameters

3. invoke the specified function (run it’s body)

4. conceptually replace the function invocation with the returned value

float warmer=cent_to_far(ctemp*1.10);

50

