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Exercise Review: HighLow

Write a computer program that selects a random number between O
and 100. Then prompt the user to enter a guess of that number. As
long as the user has not guessed the number, tell her whether her
guess is greater than or less than the target number, then ask for
another guess.
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Video Review: If Statements

e Sequential Control Flow
e Simple “if” T preem— | e
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#include <stdio.h>

* Compound Conditions =™

ffThen/Else Statement

Nested if/then/else ™ = ..

ANDed condition Solution

int main() {

printf("Enter an integer :> ");
int x;
scanf(” %d",&x);

OO EORNa

if (x<0)
printf("Your input was negativein™);

. - .
. Nested iffthen/else Solution 7:4 -' elser R .
. printf("Your input was positive or zeroln™);

Ambi Nested If Statements
Ampiguous Nested IT Statements printf("Now you know!\n");

f/Else if Sclution

o if /else if construct

Calculator Problem

return 0;

Calculator Else If Solution

* switch statements Y | ml

quadrant
coordinate s in.
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> iClicker Question

inta=1:; int b=3;

if (++a>b)

* What gets printed?|if (a < b && a++==Db) printf(“a equals b ”);
else printf("fa not equal to b? “);

printf(“a is %d, b is %d\n",a,b);

ais3,bis3
aequalsbais3,bis3

a notequaltob?ais3,bis3
.ais2,bis3

o0 wp
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Video Review: Control Flow: Loops

* while loops
* nested while loops <~ - |
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* do/while loops ,

“while" loops 0:25
3 Loop Control can be non-sequential 3:22 int main() {
] . ° intn;inti;
* InTInite loops .
printf("How high do you want to count? :> *);
for" loops 8:09 G scanf(" %d",&n);
do while” loops 11:31 3 i=1;
PY e 1 d ‘ I while(i<=n) {
r a a n CO n I n u e nfinite Loops 14:44 o " printf("and a %d\n",i);
- i+

break” keyword 17:52 }

printf("l can count to %d!\n",n);

continue" keyword 20:46
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Class Exercise: ldentify Duplicates

Given an array of grades, check to see if there are any duplicate grades.
If so, write a message that specifies that index i is a duplicate of index j,
where i<j. The array is declared as “int grades[100]”, so valid indexes
are 0 to 99, and each element of the array can be accessed as
“gradesli]”, where 0<=i<100.
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What Is a function?

* Have you ever needed to convert from C° to F°?

* Demo:
http://www.pronk.com/samples/projects/021SFunction Machine/Fu
nction Machine.HTML



http://www.pronk.com/samples/projects/021$Function_Machine/Function_Machine.HTML
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Function in C

/// L;[“iv “,f"‘”ﬂ / ""‘;/“ /
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float cent_to_far(float t) {
return (t*9.0)/5.0+32;

//////A///////A

l/////////////////é/
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Functions for Abstraction

* Function Prototype: float cent_to_far(float t)
* Function Behavior: Convert Centigrade to Fahrenheit
* Function Embodiment: WHO CARES?

* Aslong as it works, we can ignore the embodiment!
* Code it once, test it, and then use it lots of times!

gent _*° B

10
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Functions: Function Definition

e Watch the video, available on myCourses
¢ Content Function_Definition

& 5 C © Notsecure | pronk.com/samples/projects/021$Function_Machine/Function_Machine. HTML %« ® O
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Functions: Function Invocation

e Watch the video, available on myCourses
* Content PR
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Introduction 0:00

- Invoking cent_to_far 0:57
Discussion
& . ; "

— Evaluating Argument Expressions 1:49 FUnCtion |nvocati0n
Bookmarks Running the body of the function 2:20

Return Values from the Function 2:41

More complicated Argument Expressions 318

Invoking a Library Function (printf) 4:48

Argument Expression Evaluation Order 527
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Variable Scope

13
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Scope

The places in your code that can read and/or write a variable.

e Scope starts at the location where you declare the variable

* There may be holes in the scope!

* Scope ends at the end of the block in which the declare occurs
e Usually, the function in which the variable was declared

14
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Simple Example

Block in which j is declared

#include <stdio.h>

int main(int argc, char **argv) {

int j;

for(j=0; j<argc; j++) {
printf(“Argument %d = %s\n”,j,argv[jl);

}
return O; \

| "
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“Block” is Usually a Function

* Scope of variable defined inside a function is “local” to that function

e But... you can define a variable inside a sub-block of a function

16
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Internal Example

Block in which k is declared

#include <stdio.h>
int main(int argc, char **argv) {

int j;
for(j=0; j<argc; j++) {
int k=j+1;
printf("Argument %d = %s\n”,k,argv@;
}
return O;
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Global Variable

* Declared outside of a block (including functions!)
e Scope is from declaration to the end of the C file!

18
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Global Example T

#include <stdio.h>
iInt nc=0;
int myfunc(int n) { nc++; return n; }
int main(int argc, char **argv) {
Int J;
for(j=0; j<argc; j++) myFunc(2);
printf(*myfunc called %d times\n”,nc);
return O;

} T~

— |
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Local Variable Pros & Cons

Advantages Disadvantages

e Simple and intuitive * Not remembered from call to

» When you code a function, you call
don’t need to worry about what ¢ Cannot communicate outside of
you're caller is doing function

* Each invocation gets its own
version of local variables

20
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Global Variable Pros & Cons

Advantages Disadvantages

e Simple and intuitive * Increases the “outside”

e Enables functions to information a function needs to
communicate data with each be aware of (binding)
other * Prevents re-use of functions

e Remembers between function e Remembers between function
calls as well as within function calls as well as within function

calls calls

21
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Variable Class

* Automatic
* Created/Initialized on entry to block
* Destroyed on exit from block

*Static
* Created/Initialized when program starts
* Destroyed when program ends
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Default Class

* Function/Block Variables are automatic
* Created/Initialized on entry to that function/block
* Deleted when that function/block ends

* Override class of Function/Block Variables by using the “static” keyword
* Created/Initialized when the program starts
* Deleted when the program ends
* Does not change the scope — scope is still inside the function!

* Global Variables are Static
* Created/Initialized when the program starts
* Deleted when the program ends
e “Automatic” and “static” behave exactly the same — the “block” is the program!

23
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Example Local Static

char * flipflop() {
static int flip=1;
if (flip) { flip=0; return “flip”; }
else { flip=1; return “flop”; }

}
for(i=0;i<8;i++) printf("%s “,flipflop());

flip flop flip flop flip flop flip flop

24
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BAD FORM : Pseudo-Globals

* It is legal in C to nest a function inside another function

 This allows the variables in the outside function to be visible (in
scope) for the inside function

* C Coders frown on this practice!
* Nested functions have other complications
* Nested functions cannot be re-used
* It’s ugly and confusing

25
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Example Nested Functions

int main(int argc, char **argv) {
char firstArgLetter(int i) {
return argv[i][0];

§

Int J;

for(j=0;j<argc;j++) printf("Arg start: %c\n”,
firstArglLetter(j));

return O;

26
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The “main” function

e Every C program must have a “main” function
* When C program is run, the OS invokes the main function
* When the main function returns, program ends

e Return value “int”
e Return value O indicates program worked OK
* Return value other than O indicates program failed

* main function arguments — stay tuned
* main function may invoke lower level functions
* For now: int main() { ... ; return O; }

27
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Arguments to main

* When the operating system calls the “main” function, it:

 parses the command line, splitting at “white space” (blanks, tabs)
>|/convertTemp 21.3# @@

* Counts the number of blank delimited words: argc=4

* Creates an array of “words” or strings (really an array of arrays)

“/convertTemp” h
elt] K  Size=a
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Parameters of main

* Typically use argc and argv as the names of the parameters to main
int main(int argc, char **argv) { ...
e drgc argument count — the size of the argv array

e argv argument value (or vector) - a list of strings

* Each string is an array of characters
e So argv is an array of arrays of characters

« Almost (char[])[] argv —argv is an array of (array of characters)
* (note: not char[][] argv — not a two dimensional array of characters!)

 Can reference each string as argvl[i]
 Can reference individual letters as argv(il[j] really (argv[i])[j]
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Demo

* We are working on CAD for house plans. Our customer has asked us
to write a function, given the length and width of a wall in inches,
figure out how many linear feet of board to the nearest foot will we
need to cover the wall if the boards are 8 inches wide?
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Big Picture

= ySloy )

(e \yjdth eeee———)

Need ceil(height/8) boards, each width wide.
Need ceil(boards * width/12) linear feet
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Function Arguments?

 What values is the user willing to give us?
* What do we need to figure out the answer?
 What is the data type of each argument?

* What name will you use for each argument?
e Easy to type and remember

Note: When you implement your function, you may change your mind.
That’s OK.
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Return Type”?

* What type of data does your user expect you to return?
* Does the data type reflect the precision of the inputs?
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Resources

* Programming in C, Chapter 7 up to “Functions Calling Functions
Calling ...” (p. 130)

* YouTube: Meat-a-Morphis — Introduction to Functions
(https://www.youtube.com/watch?v=VUTXsPFx-qQ)

» WikiPedia: Subroutine (https://en.wikipedia.org/wiki/Subroutine)

* WikiPedia: C Standard Library:
(https://en.wikipedia.org/wiki/C standard library)

* C Library Reference Guide (https://en.cppreference.com/w/c/header)

34
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"double[cent_to_far(double t)

return (t¥9.0)/5.0+32;
} Parameter(s)
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Function Arguments or Parameters

* Almost like Local Variable Declarations with no initialization
* Comma separated list of “variables” passed in to the function
e Each entry specifies the type and name of one parameter

* When a function is invoked, the invoker specifies the initial values of
the arguments

* The parameter can be referenced by its name in the function body

* Values passed are COPIES of the arguments
* Changing a parameter does not change the caller’s variable!

37
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Argument vs. Parameter

* Really the same thing... data passed into a function to work on
* The difference is the point of view...

* Caller’s point of view:|Arguments

float ftemp=cent_to_far(28.3);

e Called function (“callee”) point of view: parameter ]

float cent_to_far(fl
return (t*9.0)/5.0+32;
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Function Body

e List of C statements that define how the function works
* Typically works on arguments to produce result

* May have “side effects” (other than producing a result)

* Write messages to the console
e Read information from a file
* Change a global variable value

* Result is specified by a “return” statement
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Function Return Value

* Type specified in function definition
* Must specify some return type

* May specify “void” to indicate function returns nothing
* In this case, no return statement is required, or no value: return;

 Value specified in body by return statement
return value;

* where value is an expression that evaluates
to the return type

40
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Generalizing Temperature Conversion

73 212 ="Water Aoils

310 a7 99  —Body Temp
2

* What if we want to support conversion from Cto F? [ % 4 3 Themieme
* What about C to K (Kelvin) 109 -y
*OrKtoF

7 -194 -320 = Afr Freeres

o
(XX} a 273 460 = Absolute Zemo

* Is there a general function that handles temperature conversion from
any scale to any scale?
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Facts about Temperatures

m Freezing Point | Boiling Point

Farenheit 32 212
Centigrade 0 100
Kelvin 273 373

Interpolation: Find distance from freezing, convert
distance to new scale, then add freezing point.
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Conversion Formulas

deltag. . = boiling(scale) — freezing(scale)

fromFreezings = tf — freezing(f)

delta;

fromFreezing, = fromFreezing, X
deltas

t = fromFreezing, + freezing(t)
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C Declare before Use Rule

* In C, you cannot invoke a function which has not been “declared”
* One way to declare a function is to fully define the function

* This causes “upside down” code
* Lowest Level functions are first in the file
* Highest Level function (main) is last in the file

44
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Example of Upside Down Code

float freezingPoint(char scale) {...}

float boilingPoint(char scale) { ... }

int validScale(char scale) { ... }

float convertTemp(...) {

...validScale(‘C’); boilingPoint(‘C’);
freezingPoint(‘C’);... }

int main(int argc, char **argv) {

... convertTemp(‘C2F’,17.3) ...

}

45
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Function Prototype Declare

* Function Prototype: float freezingPoint(char scale)
* Prototype consists of return type, function name, & parameter list

* We can declare a function by specifying the prototype;
* Followed by a semi-colon

e Still need full function definition somewhere else
* Enables “Right Side Up” coding
* Function Prototypes at the top of the file

* Function definition for top level function (main) next
* Then function definitions for lower level functions

46
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Example of RightSide Up Code
ﬁoat convertTemp(char scale,...); g
int validScale(char scale); )
float boilingPoint(char scale); %
\float freezingPoint(char scale); aJ
/lnt main(int argc, char **argv) { ... } U\
float convertTemp(char scale,...) { ... }%
int validScale(char scale) { ... } =
float boilingPoint(char scale) { ... } §
Qloat freezingPoint(char scale) {...} /

47
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Writing Functions in C

1.
2.
3.
4.
5.
6.
/.

Get the big picture... what are we trying to do?
Choose a function name

ldentify the argument list

Figure out the return type

Write the function prototype

Implement the function

Test the function
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Function Invocation

Invoke a function in a C expression by specifying:

function _name ( argument_expression_list )

function_name : name of a previously declared function

argument_expression_list : comma separated list of expressions to be used as arguments

When a function is invoked, C will....
1. evaluate argument expressions,
2. Copy argument values into parameters
3. invoke the specified function (run it’s body)
4. conceptually replace the function invocation with the returned value

float warmer=cent_to_far(ctemp*1.10);

50



