
Binghamton

University

CS-211

Fall 2019

Control Flow

1

Binghamton

University

CS-211

Fall 2019

Attendance

Please click on A if you are here:

A. I am here today.

Binghamton

University

CS-211

Fall 2019

Video Review: Logical Expressions

• Truth values of numbers

• Conditional Expressions

• Comparison Operators: <. <=. ==, !=. >=. >
• Comparing Float

• Logical Operators: !, &&, ||

• Ternary Operator: ? :

Binghamton

University

CS-211

Fall 2019

Question

• What gets printed?

A. No value – compiler error.

B. x was not 85… x is now 83

C. x was not 85… x is now 85

D. x was 85… x is now 85

int x=83;

if (x=85) printf(“x was 85… “);

else printf(“x was not 85… “);

printf(“x is now %d\n”,x);

Binghamton

University

CS-211

Fall 2019

Class Exercise: Condition Evaluation

• What does the following code print when compiled and executed?

int a = 13;
int b = ++a;
if (++b < ++a) { printf("Condition 1\n"); }
else {

if (--b > a--) { printf("Condition 2\n"); }
else {

if (++b < a++) { printf("Condition 3\n"); }
else { printf("Condition 4\n"); }

}
}
printf("a=%d, b=%d\n",a,b);

Binghamton

University

CS-211

Fall 2019

Video Review: Bit Oriented Expressions

• Logical vs. Bitwise Operators / Expressions

• Bitwise Operators: ~, &, |, ^

• Bitwise Semantics

Binghamton

University

CS-211

Fall 2019

Video Review: Bit Shifting

• Shift Operators: >> and <<
• Overshift pitfall!

• << left side padding

• >> right side padding
• Positive numbers

• Negative numbers

• Unsigned numbers

Binghamton

University

CS-211

Fall 2019

(Project LookAhead) Arguments to main

• When the operating system calls the “main” function, it:

• parses the command line, splitting at “white space” (blanks, tabs)
>./convertTemp 21.3 F C

• Counts the number of blank delimited words: argc=4

• Creates an array of “words” or strings (really an array of arrays)

argv[0] “./convertTemp”

argv[1] “21.3”

argv[2] “F”

argv[3] “C”

Size=4

Binghamton

University

CS-211

Fall 2019

(Project LookAhead) Parameters of main

• Typically use argc and argv as the names of the parameters to main

int main(int argc, char **argv) { …

• argc argument count – the size of the argv array

• argv argument value (or vector) - a list of strings
• Each string is an array of characters

• So argv is an array of arrays of characters

• Can reference each string as argv[i]

• Can reference individual letters as argv[i][j]

• For instance, the first letter of the second arg is argv[1][0]

Binghamton

University

CS-211

Fall 2019

“Bit Twiddling”

• Combination of bitwise operations and shifting

• Enables manipulation of multiple bits

• Often very “clever” (or confusing)

• Examples…

x <<=y; // multiply by 2
y

x >>=3; // Divide by 8 (almost)

if ((x^y)<0) // do x and y have opposite signs?

for(c=0;v;v>>=1) c+=v&1; // count true bits in v

10

Binghamton

University

CS-211

Fall 2019

Difference between shift right and divide

char x = -15; // 0b 1111 0001

char y = x/8; // -15/8 = -1.825 = -1 = 0b 1111 1111

char z = x>>3; // 0b 1111 1000 ->

// 0b 1111 1100 ->

// 0b 1111 1110 = -2

• Integer division always rounds towards zero
• Rounds down for positive numbers
• Rounds up for negative numbers

• Shift right always truncates
• Always rounds down for both positive and negative numbers

Binghamton

University

CS-211

Fall 2019

Class Exercise: Bit Flags

• You have variables my_speed and your_speed to tell how fast I am
and how fast you are.

• You have variables my_press and your_press to tell how much weight
you and I can bench press at the gym

• Create a char variable called “flags” that has:
• A flag bit to indicate whether I am faster or you are faster

• A flag bit to indicate whether I am stronger or you are stronger

• A flag bit to indicate whether I am better (both faster and stronger) than you
are

• A flag bit to indicate that the other flag bits have been set on

Binghamton

University

CS-211

Fall 2019

Using Bit Twiddling for Multiple Flags

#define IS_FASTER 0b00000001 // decimal value 1

#define IS_STRONGER 0b00000010 // decimal value 2

#define IS_BETTER 0b00000100 // decimal value 4

#define IS_SET 0b00001000 // decimal value 8

char flags=0; // Init all flags off

if (my_speed > your_speed) flags |= IS_FASTER; // turn on faster flag

if (my_press > your_press) flags |= IS_STRONGER; // turn on stronger flag

if (flags & IS_FASTER && flags & IS_STRONGER) flags |= IS_BETTER; // turn on better

flags |=IS_SET; // turn on set flag

Binghamton

University

CS-211

Fall 2019

Class Exercise: Bit Flags (Continued)

• If variable “my_ego” is false, turn off the IS_BETTER flag

• If they are true, then print out
• “I am faster”

• “I am stronger”

• “I am better”

Binghamton

University

CS-211

Fall 2019

Using Bit Twiddling for Multiple Flags

#define IS_FASTER 0b00000001

#define IS_STRONGER 0b00000010

#define IS_BETTER 0b00000100

#define IS_SET 0b00001000

…

if (!my_ego) flags &= ~IS_BETTER; // Turn off IS_BETTER flag

if (flags & IS_FASTER) printf(“I am faster.\n”);

if (flags & IS_STRONGER) printf(“I am stronger.\n”);

if (flags & IS_BETTER) printf(“I am better.\n”);

Binghamton

University

CS-211

Fall 2019

Exercise Review: Conv. to Binary & Hex

Get an integer number from the user.

Write out the binary representation of that number.

Write out the hexadecimal representation of that number (without
using printf %x format).

Binghamton

University

CS-211

Fall 2019

Control Flow: If Statements

• Watch the video, available on myCourses
• Content

• Videos
• 7. Control Flow

Binghamton

University

CS-211

Fall 2019

Control Flow: Loops

• Watch the video, available on myCourses
• Content

• Videos
• 7. Control Flow

Binghamton

University

CS-211

Fall 2019

Exercise: HighLow

Write a computer program that selects a random number between 0
and 100. Then prompt the user to enter a guess of that number. As
long as the user has not guessed the number, tell her whether her
guess is greater than or less than the target number, then ask for
another guess.

Binghamton

University

CS-211

Fall 2019

Exercise Background : Random Numbers

• The standard library defined by <stdlib.h> contains a built-in function
called “rand()”, which returns a pseudo-random non-negative integer

• You can get a number between 0 and 100 by doing: rand()%100

• The pseudo-random seed is “1” by default, so you get the same
random number each time, unless we change the random number
seed…

Binghamton

University

CS-211

Fall 2019

Exercise Background: Random Seed

• To approximate true randomness, use the current time as a random
seed.

• The time capabilities are contained in standard library header
<sys/times.h>.

• The “times()” built-in function takes an argument that specifies space
to use for the result, and returns the current time, in processor clock
ticks since last boot.

• The standard library “srand(seed)” function allows you to tell the
random number generator to use a new seed (instead of 1)

Binghamton

University

CS-211

Fall 2019

Exercise Background: Example Random

#include <stdlib.h>

#include <sys/times.h>

#include <stdio.h>

int main() {

struct tms t; // Declare a time variable for the result

srand(times(&t)); // Seed random with current time

int n = rand() % 101;

printf(“Random number is %d\n”,n);

return 0;

}

Binghamton

University

CS-211

Fall 2019

Resources

• Programming in C, Chapter 5

• Wikipedia: Conditional (computer programming)
(https://en.wikipedia.org/wiki/Conditional_(computer_programming)
)

• Wikipedia: Control Flow (https://en.wikipedia.org/wiki/Control_flow)

23

https://en.wikipedia.org/wiki/Conditional_(computer_programming)
https://en.wikipedia.org/wiki/Control_flow

Binghamton

University

CS-211

Fall 2019

Control Flow: If Statements

• Watch the video, available on myCourses
• Content

• Videos
• 7. Control Flow

Binghamton

University

CS-211

Fall 2019

Sequential Control Flow

int x = 7;

int y = 10;

printf(“x+y=%d\n”,x+y);

Binghamton

University

CS-211

Fall 2019

If

Conditional Processing

26

Binghamton

University

CS-211

Fall 2019

Simple If statement syntax

if (condition) then_statement;

• condition : Any expression whose results is true or false

• then_statement : Any statement or block of statements

• The then_statement is executed only when the <condition> is true

• Warning: No “then” keyword!

if (x!=0) x=113/x;

27

Binghamton

University

CS-211

Fall 2019

If statement flow

Condition

Then-block

Next Statement

TRUEFALSE

Binghamton

University

CS-211

Fall 2019

If/Then/Else syntax

if (condition) then_statement else else_statement

• condition : Any expression whose results is true or false

• then_statement : Any statement or block of statements

• else_statement : Any statement or block of statements

• The then_statement is executed only when the condition is true

• The else_statement is executed only when the condition is false

if (x!=0) x=113/x; else x=-1;

29

Binghamton

University

CS-211

Fall 2019

If / else statement flow

Condition

Else-block

Next Statement

TRUE FALSE

Then-block

Binghamton

University

CS-211

Fall 2019

If/Then/Else Example

int x;

scanf(“%d”,&x);

if (x<0) {

printf(“Your input was negative\n”);

} else {

printf(“Your input was positive or zero\n”);

}

printf(“Now you know!\n”);

31

Binghamton

University

CS-211

Fall 2019

int x;

scanf(“%d”,&x);

if (x<0)

printf(“Your input was negative\n”); printf(“Your input was positive or zero\n”);

printf(“Now you know!\n”);

Nassi-Schneiderman…

elsethen

F

L

O

W

Binghamton

University

CS-211

Fall 2019

Problem
Given an x and y
value, print which
quadrant the
coordinate is in.

33

Binghamton

University

CS-211

Fall 2019

Compound Logic Solution

if ((x>=0)&&(y>=0)) printf (“Quadrant I”);

if ((x>=0)&&(y<0)) printf(“Quadrant IV”);

if ((x<0) &&(y>=0)) printf(“Quadrant II”);

if ((x<=0)&&(y<0)) printf(“Quadrant III”);

34

Binghamton

University

CS-211

Fall 2019

Nested If/Then/Else

• It’s perfectly legal for a then block or else block to contain an if/then/else
statement

if (x>=0) {

if (y>=0) printf(“Quadrant I”);

else printf(“Quadrant IV”);

} else {

if (y>=0) printf(“Quadrant II”);

else printf(“Quadrant III”);

}

35

Binghamton

University

CS-211

Fall 2019

Without curly braces,
“else” is matched with

the nearest “if”

Nested If/Then/Else Ambiguity

if (x>0) { if (y>0) printf (“x>0, y>0\n”);

else printf(“y<0\n”);

}

36

if (x>0) if (y>0) printf (“x>0, y>0\n”);

else printf (“Is x negative, or is y negative????\n”);

if (x>0) { if (y>0) printf (“x>0, y>0\n”); }

else printf(“x<0\n”);

Binghamton

University

CS-211

Fall 2019

Alternative Else/If Construct

if ((x>=0)&&(y>=0)) printf (“Quadrant I”);

else if ((x>=0)&&(y<0)) printf(“Quadrant IV”);

else if ((x<0)&&(y>=0)) printf(“Quadrant II”);

else printf(“Quadrant III”);

37

Binghamton

University

CS-211

Fall 2019

Deconstructing if/else/if

if ((x>=0)&&(y>=0)) { printf (“Quadrant I”); }

else {

if ((x>=0)&&(y<0)) { printf(“Quadrant IV”); }

else {

if ((x<0)&&(y>=0)) { printf(“Quadrant II”); }

else {

printf(“Quadrant III”);

}

}

}

}

38

Binghamton

University

CS-211

Fall 2019

Don’t Forget “?”

if (doMore) {

x=y*3;

} else {

x=x-1;

}

x=doMore?(y*3):(x-1);

39

when both if_statement and
else_statement assign values to the

same variable

sometimes “?” helps show what is
going on

Binghamton

University

CS-211

Fall 2019

Problem

• Write a C program to perform simple calculator functions

• Support +,-,*,/ operators and 2 arguments

Binghamton

University

CS-211

Fall 2019

Another else/if construct

if (op==‘+’) ans=a+b;

else if (op==‘-’) ans=a-b;

else if (op==‘*’) ans = a*b;

else if (op==‘/’) ans = a/b;

else {

printf “Unrecognized operator: %c\n”,op);

ans=0;

}

41

comparing the same variable to
different literal values

Binghamton

University

CS-211

Fall 2019

Example Switch Statement

switch(op) {

case(‘+’): ans=a+b; break;

case(‘-’): ans=a-b; break;

case(‘*’): ans=a*b; break;

case(‘/’): ans=a/b; break;

default: printf(“Unrecognized operator: %c\n”,op);

ans=0;

}

42

Binghamton

University

CS-211

Fall 2019

The “switch” statement
switch(expression) {

case (v1) :

v1_block

break;

case (v2) :

v2_block

break;

…

default:

def_block

}

if (expression==v1) {

v1_block

} else if (expression==v2) {

v2_block

}

…

} else {

def_block

}
43

Binghamton

University

CS-211

Fall 2019

switch flow

Case
A:

Default

Next Statement

TRUE FALSE

A Block

Switch Statement

Case
B:

B Block

…
TRUE

Binghamton

University

CS-211

Fall 2019

Control Flow: Loops
Summary Notes

Binghamton

University

CS-211

Fall 2019

Loops
Going around in Circles

46

Binghamton

University

CS-211

Fall 2019

While Loop

while(condition) body

• condition : Any expression evaluated as true or false

• body: Any valid statement or block of statements

• body is re-executed as long as condition is true

• condition is re-evaluated after each “iteration” of the loop

• If condition is false to start with, body is never executed!

47

Binghamton

University

CS-211

Fall 2019

while statement flow

Condition

body

Next Statement

TRUEFALSE

Binghamton

University

CS-211

Fall 2019

Example While Loop

int temp=check_temp();

while(temp<100) {

add_heat();

temp=check_temp();

}

/* temperature reached 100… water should boil */

49

Binghamton

University

CS-211

Fall 2019

Nested While Loops

int count=100;

while(count>0) {

int result=experiment(count);

printf(“%3i : “,count);

int j=0;

while(j<result) { printf(“*”); j++; }

printf(“\n”);

count--;

}

50

100:
99: *
98: *
97: **
96: *
95: **
94: ***
93: *****
92: ******
91: **********
90: ***********
89: ********
88: ******
87: ****
86: ***
85: **
84: *

…

Binghamton

University

CS-211

Fall 2019

Example While Loop

int count=100;

while(count>0) {

int result=experiment(count);

printf(“%3i : “,count);

int j=0;

while(j<result) { printf(“*”); j++; }

printf(“\n”);

count--;

}

51

100:
99: *
98: *
97: **
96: *
95: **
94: ***
93: *****
92: ******
91: **********
90: ***********
89: ********
88: ******
87: ****
86: ***
85: **
84: *

…

Initialization

Condition

“Increment”

Binghamton

University

CS-211

Fall 2019

for loop

for (init;condition;iteration) body

• init : Expression executed before loop starts

• condition : Expression evaluated to see if body should continue

• iteration : Expression executed after body, before condition

• body : Statement or block that makes up the body of the loop

52

Binghamton

University

CS-211

Fall 2019

for statement flow

Condition

body

Next Statement

TRUEFALSE

init

iteration

Binghamton

University

CS-211

Fall 2019

Example for Loop

int count;

for(count=100;count>0;count--) {

int result=experiment(count);

printf(“%3i : “,count);

int j;

for(j=0;j<result;j++) printf(“*”);

printf(“\n”);

}

54

100:
99: *
98: *
97: **
96: *
95: **
94: ***
93: *****
92: ******
91: **********
90: ***********
89: ********
88: ******
87: ****
86: ***
85: **
84: *

…

Binghamton

University

CS-211

Fall 2019

More Example For Loops

for(data=get_first(); more_data(); data=get_next()) {

process(data);

}

for(i=0,sum=0; i<100;) sum+=experiment(i++);

average=sum/100;

55

Binghamton

University

CS-211

Fall 2019

do/while loops

• C also supports a “do while” loop

do body while (condition) ;
• The only difference from a normal “while” loop is that the body of the

loop is executed once BEFORE the condition is tested the first time.

• Very rarely used

Binghamton

University

CS-211

Fall 2019

do/while statement flow

Condition

body

Next Statement

TRUE FALSE

Binghamton

University

CS-211

Fall 2019

Infinite Loops (or way too long)
int i=get_max();

while(i!=0) {

process(i);

i--;

}

for(i=0; i<10; i++) {

process(i); i=3;

}

x=1;

while(x) { do_stuff(x); }

58

Binghamton

University

CS-211

Fall 2019

Breaking out of loops early

• break; statement leaves innermost loop (while/for/switch)
• No checking of <condition>

• No increment in for loop

for(i=0;i<100;i++) {

result=experiment(i);

if (result<0) break; /* Something bad happened */

…

}

59

Binghamton

University

CS-211

Fall 2019

Early Iteration of Loops

• continue; statement ends this iteration of the loop
• In for loops, iteration statement executed again

• condition re-evaluated

• If condition is true, next iteration of the loop starts

for(count=0; count<100; count++) {

if (0==count%7) continue; // skip every 7th experiment

result=experiment(count);

…

}

60

