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Attendance

Please click on A if you are here:

A. I am here today.
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Video Review: Logical Expressions

• Truth values of numbers

• Conditional Expressions

• Comparison Operators: <. <=. ==, !=. >=. >
• Comparing Float

• Logical Operators: !, &&, ||

• Ternary Operator: ? :
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Question

• What gets printed? 

A. No value – compiler error.

B. x was not 85… x is now 83

C. x was not 85… x is now 85

D. x was 85… x is now 85

int x=83; 

if (x=85) printf(“x was 85… “);

else printf(“x was not 85… “);

printf(“x is now %d\n”,x);
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Class Exercise: Condition Evaluation

• What does the following code print when compiled and executed?

int a = 13;
int b = ++a;
if (++b < ++a) { printf("Condition 1\n"); }
else {

if (--b > a--) { printf("Condition 2\n"); }
else {

if (++b < a++) { printf("Condition 3\n"); }
else { printf("Condition 4\n"); }

}
}
printf("a=%d, b=%d\n",a,b);
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Video Review: Bit Oriented Expressions

• Logical vs. Bitwise Operators / Expressions

• Bitwise Operators: ~, &, |, ^

• Bitwise Semantics
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Video Review: Bit Shifting

• Shift Operators: >> and <<
• Overshift pitfall!

• << left side padding

• >> right side padding
• Positive numbers

• Negative numbers

• Unsigned numbers
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(Project LookAhead) Arguments to main

• When the operating system calls the “main” function, it:

• parses the command line, splitting at “white space” (blanks, tabs)
>./convertTemp 21.3    F C

• Counts the number of blank delimited words: argc=4

• Creates an array of “words” or strings (really an array of arrays)

argv[0] “./convertTemp”

argv[1] “21.3”

argv[2] “F”

argv[3] “C”

Size=4
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(Project LookAhead) Parameters of main

• Typically use argc and argv as the names of the parameters to main

int main(int argc, char **argv) { …

• argc argument count – the size of the argv array

• argv argument value (or vector) - a list of strings
• Each string is an array of characters

• So argv is an array of arrays of characters

• Can reference each string as argv[i]

• Can reference individual letters as argv[i][j]

• For instance, the first letter of the second arg is argv[1][0]
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“Bit Twiddling”

• Combination of bitwise operations and shifting

• Enables manipulation of multiple bits

• Often very “clever” (or confusing)

• Examples…

x <<=y; // multiply by 2
y

x >>=3; // Divide by 8 (almost)

if ((x^y)<0) // do x and y have opposite signs?

for(c=0;v;v>>=1) c+=v&1; // count true bits in v

10
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Difference between shift right and divide

char x = -15; // 0b 1111 0001

char y = x/8; // -15/8 = -1.825 = -1 = 0b 1111 1111

char z = x>>3; // 0b 1111 1000 -> 

// 0b 1111 1100 -> 

// 0b 1111 1110 = -2 

• Integer division always rounds towards zero
• Rounds down for positive numbers
• Rounds up for negative numbers

• Shift right always truncates
• Always rounds down for both positive and negative numbers
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Class Exercise: Bit Flags

• You have variables my_speed and your_speed to tell how fast I am 
and how fast you are.

• You have variables my_press and your_press to tell how much weight 
you and I can bench press at the gym

• Create a char variable called “flags” that has:
• A flag bit to indicate whether I am faster or you are faster

• A flag bit to indicate whether I am stronger or you are stronger

• A flag bit to indicate whether I am better (both faster and stronger) than you 
are

• A flag bit to indicate that the other flag bits have been set on
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Using Bit Twiddling for Multiple Flags

#define IS_FASTER 0b00000001 // decimal value 1

#define IS_STRONGER 0b00000010 // decimal value 2

#define IS_BETTER 0b00000100 // decimal value 4

#define IS_SET 0b00001000 // decimal value 8

char flags=0; // Init all flags off 

if (my_speed > your_speed) flags |= IS_FASTER; // turn on faster flag

if (my_press > your_press) flags |= IS_STRONGER; // turn on stronger flag

if (flags & IS_FASTER && flags & IS_STRONGER) flags |= IS_BETTER; // turn on better

flags |=IS_SET; // turn on set flag
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Class Exercise: Bit Flags (Continued)

• If variable “my_ego” is false, turn off the IS_BETTER flag

• If they are true, then print out 
• “I am faster”

• “I am stronger”

• “I am better”
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Using Bit Twiddling for Multiple Flags

#define IS_FASTER 0b00000001

#define IS_STRONGER 0b00000010

#define IS_BETTER 0b00000100

#define IS_SET 0b00001000

…

if (!my_ego) flags &= ~IS_BETTER; // Turn off IS_BETTER flag

if (flags & IS_FASTER) printf(“I am faster.\n”);

if (flags & IS_STRONGER) printf(“I am stronger.\n”);

if (flags & IS_BETTER) printf(“I am better.\n”);
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Exercise Review: Conv. to Binary & Hex

Get an integer number from the user.

Write out the binary representation of that number.

Write out the hexadecimal representation of that number (without 
using printf %x format).



Binghamton

University

CS-211

Fall 2019

Control Flow: If Statements

• Watch the video, available on myCourses
• Content

• Videos
• 7. Control Flow
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Control Flow: Loops

• Watch the video, available on myCourses
• Content

• Videos
• 7. Control Flow
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Exercise: HighLow

Write a computer program that selects a random number between 0 
and 100. Then prompt the user to enter a guess of that number. As 
long as the user has not guessed the number, tell her whether her 
guess is greater than or less than the target number, then ask for 
another guess.
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Exercise Background : Random Numbers

• The standard library defined by <stdlib.h> contains a built-in function 
called “rand()”, which returns a pseudo-random non-negative integer

• You can get a number between 0 and 100 by doing: rand()%100

• The pseudo-random seed is “1” by default, so you get the same 
random number each time, unless we change the random number 
seed…
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Exercise Background: Random Seed

• To approximate true randomness, use the current time as a random 
seed.

• The time capabilities are contained in standard library header 
<sys/times.h>.

• The “times()” built-in function takes an argument that specifies space 
to use for the result, and returns the current time, in processor clock 
ticks since last boot.

• The standard library “srand(seed)” function allows you to tell the 
random number generator to use a new seed (instead of 1)
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Exercise Background: Example Random

#include <stdlib.h>

#include <sys/times.h>

#include <stdio.h>

int main() {

struct tms t; // Declare a time variable for the result

srand(times(&t)); // Seed random with current time

int n = rand() % 101;

printf(“Random number is %d\n”,n);

return 0;

}
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Resources

• Programming in C, Chapter 5

• Wikipedia: Conditional (computer programming) 
(https://en.wikipedia.org/wiki/Conditional_(computer_programming)
)

• Wikipedia: Control Flow (https://en.wikipedia.org/wiki/Control_flow)

23

https://en.wikipedia.org/wiki/Conditional_(computer_programming)
https://en.wikipedia.org/wiki/Control_flow
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Control Flow: If Statements

• Watch the video, available on myCourses
• Content

• Videos
• 7. Control Flow
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Sequential Control Flow

int x = 7;

int y = 10;

printf(“x+y=%d\n”,x+y);
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If

Conditional Processing

26
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Simple If statement syntax

if (condition) then_statement;

• condition : Any expression whose results is true or false

• then_statement : Any statement or block of statements

• The then_statement is executed only when the <condition> is true

• Warning: No “then” keyword!

if (x!=0) x=113/x;

27
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If statement flow

Condition

Then-block

Next Statement

TRUEFALSE
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If/Then/Else syntax

if (condition) then_statement else else_statement

• condition : Any expression whose results is true or false

• then_statement : Any statement or block of statements

• else_statement : Any statement or block of statements

• The then_statement is executed only when the condition is true

• The else_statement is executed only when the condition is false

if (x!=0) x=113/x; else x=-1;

29
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If / else statement flow

Condition

Else-block

Next Statement

TRUE FALSE

Then-block
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If/Then/Else Example

int x;

scanf(“%d”,&x);

if (x<0) {

printf(“Your input was negative\n”);

} else {

printf(“Your input was positive or zero\n”);

}

printf(“Now you know!\n”);

31
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int x;

scanf(“%d”,&x);

if (x<0)

printf(“Your input was negative\n”); printf(“Your input was positive or zero\n”);

printf(“Now you know!\n”);

Nassi-Schneiderman…

elsethen

F

L

O

W



Binghamton

University

CS-211

Fall 2019

Problem
Given an x and y 
value, print which 
quadrant the 
coordinate is in.

33
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Compound Logic Solution

if ((x>=0)&&(y>=0)) printf (“Quadrant I”);

if ((x>=0)&&(y<0) ) printf(“Quadrant IV”);

if ((x<0) &&(y>=0)) printf(“Quadrant II”);

if ((x<=0)&&(y<0) ) printf(“Quadrant III”);

34
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Nested If/Then/Else

• It’s perfectly legal for a then block or else block to contain an if/then/else 
statement

if (x>=0) {

if (y>=0) printf(“Quadrant I”);

else printf(“Quadrant IV”);

} else {

if (y>=0) printf(“Quadrant II”);

else printf(“Quadrant III”);

}

35
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Without curly braces, 
“else” is matched with 

the nearest “if”

Nested If/Then/Else Ambiguity

if (x>0) { if (y>0) printf (“x>0, y>0\n”); 

else printf(“y<0\n”); 

}

36

if (x>0) if (y>0) printf (“x>0, y>0\n”);

else printf (“Is x negative, or is y negative????\n”);

if (x>0) { if (y>0) printf (“x>0, y>0\n”); }

else printf(“x<0\n”);



Binghamton

University

CS-211

Fall 2019

Alternative Else/If Construct

if        ((x>=0)&&(y>=0)) printf (“Quadrant I”);

else if ((x>=0)&&(y<0))    printf(“Quadrant IV”);

else if ((x<0)&&(y>=0))    printf(“Quadrant II”);

else                                  printf(“Quadrant III”);

37
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Deconstructing if/else/if

if ((x>=0)&&(y>=0)) { printf (“Quadrant I”); }

else { 

if ((x>=0)&&(y<0)) { printf(“Quadrant IV”); }

else { 

if ((x<0)&&(y>=0)) { printf(“Quadrant II”); }

else {

printf(“Quadrant III”);

}

}

}

}

38
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Don’t Forget “?”

if (doMore) {

x=y*3;

} else {

x=x-1;

}

x=doMore?(y*3):(x-1);

39

when both if_statement and 
else_statement assign values to the 

same variable

sometimes “?” helps show what is 
going on
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Problem

• Write a C program to perform simple calculator functions

• Support +,-,*,/ operators and 2 arguments 
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Another else/if construct

if        (op==‘+’) ans=a+b;

else if (op==‘-’)  ans=a-b;

else if (op==‘*’)  ans = a*b;

else if (op==‘/’)  ans = a/b;

else {

printf “Unrecognized operator: %c\n”,op);

ans=0;

}

41

comparing the same variable to 
different literal values
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Example Switch Statement

switch(op) {

case(‘+’): ans=a+b; break;

case(‘-’): ans=a-b; break;

case(‘*’): ans=a*b; break;

case(‘/’): ans=a/b; break;

default: printf(“Unrecognized operator: %c\n”,op);

ans=0;

} 

42
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The “switch” statement
switch(expression) {

case (v1) :

v1_block

break;

case (v2) :

v2_block

break;

…

default:

def_block

}

if (expression==v1) {

v1_block

} else if (expression==v2) {

v2_block

}

…

} else {

def_block

}
43
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switch flow

Case 
A:

Default

Next Statement

TRUE FALSE

A Block

Switch Statement

Case 
B:

B Block

…
TRUE
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Control Flow: Loops
Summary Notes
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Loops
Going around in Circles

46
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While Loop

while(condition) body

• condition : Any expression evaluated as true or false

• body: Any valid statement or block of statements

• body is re-executed as long as condition is true

• condition is re-evaluated after each “iteration” of the loop

• If condition is false to start with, body is never executed!

47
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while statement flow

Condition

body

Next Statement

TRUEFALSE
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Example While Loop

int temp=check_temp();

while(temp<100) {

add_heat();

temp=check_temp();

}

/* temperature reached 100… water should boil */

49
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Nested While Loops

int count=100;

while(count>0) {

int result=experiment(count);

printf(“%3i : “,count);

int j=0;

while(j<result) {  printf(“*”); j++; }

printf(“\n”);

count--;

}

50

100: 
99: *
98: *
97: **
96: *
95: **
94: ***
93: *****
92: ******
91: **********
90: ***********
89: ********
88: ******
87: ****
86: ***
85: **
84: *

…



Binghamton

University

CS-211

Fall 2019

Example While Loop

int count=100;

while(count>0) {

int result=experiment(count);

printf(“%3i : “,count);

int j=0;

while(j<result) {  printf(“*”); j++; }

printf(“\n”);

count--;

}

51

100: 
99: *
98: *
97: **
96: *
95: **
94: ***
93: *****
92: ******
91: **********
90: ***********
89: ********
88: ******
87: ****
86: ***
85: **
84: *

…

Initialization

Condition

“Increment”
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for loop

for (init;condition;iteration) body

• init : Expression executed before loop starts

• condition : Expression evaluated to see if body should continue

• iteration : Expression executed after body, before condition

• body : Statement or block that makes up the body of the loop

52
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for statement flow

Condition

body

Next Statement

TRUEFALSE

init

iteration
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Example for Loop

int count;

for(count=100;count>0;count--) {

int result=experiment(count);

printf(“%3i : “,count);

int j;

for(j=0;j<result;j++) printf(“*”); 

printf(“\n”);

}

54

100: 
99: *
98: *
97: **
96: *
95: **
94: ***
93: *****
92: ******
91: **********
90: ***********
89: ********
88: ******
87: ****
86: ***
85: **
84: *

…
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More Example For Loops

for(data=get_first(); more_data(); data=get_next()) {

process(data);

}

for(i=0,sum=0; i<100;) sum+=experiment(i++);

average=sum/100;

55
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do/while loops

• C also supports a “do while” loop

do body while (condition) ;
• The only difference from a normal “while” loop is that the body of the 

loop is executed once BEFORE the condition is tested the first time.

• Very rarely used
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do/while statement flow

Condition

body

Next Statement

TRUE FALSE
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Infinite Loops (or way too long)
int i=get_max();

while(i!=0) {

process(i);

i--;

}

for(i=0; i<10; i++) {

process(i); i=3;

}

x=1;

while(x) { do_stuff(x); }

58
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Breaking out of loops early

• break; statement leaves innermost loop (while/for/switch)
• No checking of <condition>

• No increment in for loop

for(i=0;i<100;i++) {

result=experiment(i);

if (result<0) break; /* Something bad happened */

…

}

59
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Early Iteration of Loops

• continue; statement ends this iteration of the loop
• In for loops, iteration statement executed again

• condition re-evaluated

• If condition is true, next iteration of the loop starts

for(count=0; count<100; count++) {

if (0==count%7) continue; // skip every 7th experiment

result=experiment(count);

…

}

60


