
Binghamton

University

CS-211

Fall 2019

C Syntax
What the Compiler needs to understand your program

1

Binghamton

University

CS-211

Fall 2019

Attendance

Please click on A if you are here:

A. I am here today.

Binghamton

University

CS-211

Fall 2019

Video Review: Unix Terminal

• History

• Scrolling, Editing, Command History

• Questions?

Binghamton

University

CS-211

Fall 2019

Video Review: Files and Folders

• Home directory

• Current directory

• Unix commands: mkdir, rmdir, ls

• Questions?

Binghamton

University

CS-211

Fall 2019

Video Review: Compilers

• Running gcc

• Warning and Error Messages

• Running a program

• Questions?

Binghamton

University

CS-211

Fall 2019

Question

Please click on the choice that is true:

A. The gcc parameter “-Wall” helps build a wall between your
code and library code.

B. The gcc parameter “-g” tells the compiler to run garbage
collection.

C. The gcc parameter “-o HelloWorld” tells the compiler to
put its output (an executable) in a file called “HelloWorld”.

D. None of the above.

Binghamton

University

CS-211

Fall 2019

Exercise Review

• Write a computer program that reads a number, and computes the
square of that number.

Binghamton

University

CS-211

Fall 2019

• Watch the video, available on myCourses
• Content

• Videos
• 3. C Syntax

The C Pre-processor

Binghamton

University

CS-211

Fall 2019

Question

Please click on the choice that is true:

A. There are no pre-processor directives in “HelloWorld.c”

B. There is only one pre-processor directive in “HelloWorld.c”

C. There are more than one pre-processor directives in
“HelloWorld.c”

D. I have no clue what a pre-processor directive is

#include <stdio.h>

int main() {
printf(“Hello World!\n”);
return 0;

}

Binghamton

University

CS-211

Fall 2019

C Syntax - in General

• Watch the video, available on myCourses
• Content

• Videos
• 3. C Syntax

Binghamton

University

CS-211

Fall 2019

Question

Please click on the choice that is true:

A. There is one block with two statements in “HelloWorld.c”

B. There is one block with three statements in “HelloWorld.c”

C. There are no blocks in “HelloWorld.c”

D. I have no clue what a block is.

#include <stdio.h>

int main() {
printf(“Hello World!\n”);
return 0;

}

Binghamton

University

CS-211

Fall 2019

Exercise: interesting.c

Write a C program, based on “Hello World” that prints out something
interesting about yourself. For instance, what is your favorite thing to
do in your spare time, or what is the most interesting thing that has
happened to you recently? A single line of output is OK, but you may
want to write several lines… just no War and Peace please.

Binghamton

University

CS-211

Fall 2019

Resources

• Programming in C, Chapter 3

• C FAQ: C Preprocessor (http://c-faq.com/cpp/index.html)

• Wikipedia: C Preprocessor
(https://en.wikipedia.org/wiki/C_preprocessor),

• Wikipedia: C Syntax (https://en.wikipedia.org/wiki/C_syntax)

• C FAQ: Style (http://c-faq.com/style/index.html)

• C Syntax Tutorial
(https://www.tutorialspoint.com/cprogramming/c_basic_syntax.htm)
or (https://www.studytonight.com/c/c-syntax.php)

13

http://c-faq.com/cpp/index.html
https://en.wikipedia.org/wiki/C_preprocessor
https://en.wikipedia.org/wiki/C_syntax
http://c-faq.com/style/index.html
https://www.tutorialspoint.com/cprogramming/c_basic_syntax.htm
https://www.studytonight.com/c/c-syntax.php

Binghamton

University

CS-211

Fall 2019

The C Pre-processor
Summary Notes

Binghamton

University

CS-211

Fall 2019

The C Compiler

square.c GCC square

Your original C code

Compiler

Executable Machine
Code

Command: gcc -g –Wall –o square square.c

Binghamton

University

CS-211

Fall 2019

The C Compiler

square.c

GCC

square

Your original C code

Compiler

Executable Machine
Code

Command: gcc -g –Wall –o square square.c

CPP

Binghamton

University

CS-211

Fall 2019

GCC

The C Pre-Processor

square.c CPP square.cpp

Your original C code

Handle pre-processor
directives

Pre-processed C code

Command: gcc –E –o square.cpp square.c

Binghamton

University

CS-211

Fall 2019

Pre-Processing Directives

• Any line that starts with “#” is a “pre-processor directive”

• Pre-processor consumes that entire line
• Possibly replacing it with other C code

18

Binghamton

University

CS-211

Fall 2019

#include directive

• #include <filename>
• Replace directive with contents of filename, as found in the system library

• May contain subdir/filename to search in subdirectory of the system library

• #include “filename”
• Replace directive with contents of filename, as found in current directory

• May contain subdir/filename to search in subdirectory of the current
directory

• Contents of replaced files are pre-processed as well

Binghamton

University

CS-211

Fall 2019

gcc –E output

• C code,

• pseudo “comment” lines of the form:

lno “filename” flags

• Where:
• lno is the line number in…

• filename

• flags: 1=“start”, 2=“end”, 3=“library”, 4=“extern”

• See: https://gcc.gnu.org/onlinedocs/cpp/ for complete details

https://gcc.gnu.org/onlinedocs/cpp/

Binghamton

University

CS-211

Fall 2019

#define directive

#define name value
• From now on, every instance of name is replaced by value

• name is usually all uppercase

• Value is everything up to final white space on line

• Value can cross lines if ended with a backslash (\)

• Used for compiler constants, e.g.
#define DIME_VALUE 10
value = DIME_VALUE * number_of_dimes;

• Complex #defines for pre-processor macros

Binghamton

University

CS-211

Fall 2019

#ifdef directive

#ifdef name or #ifndef name

#endif

• Only include lines between #ifdef and #endif if name is #defined

• Allows multiple implementations e.g.
#ifdef method1

#endif

#ifdef method2

#endif

• Use gcc –Dmethod2 … as an alternative to #define

Binghamton

University

CS-211

Fall 2019

C Syntax - in General
Summary Notes

Binghamton

University

CS-211

Fall 2019

White Space

• Needed to separate tokens
• e.g. “then break” are two contiguous keywords, but “thenbreak” is a

single identifier

• Otherwise, white space is ignored
• “then break” is the same as “then break” is the same as “then

break”

• Enables programmer to choose formatting preferences

24

Binghamton

University

CS-211

Fall 2019

Keywords

asm auto break case char const continue
default do double else enum extern float for
fortran goto if int long register return short
signed sizeof static struct switch typedef
union unsigned void volatile while

25

Keywords have special meaning to
the compiler, so you can’t use them

for other names.

Binghamton

University

CS-211

Fall 2019

Type Keywords

auto char const double enum extern float int
long register short signed static struct typedef
union unsigned void volatile

26

These keywords are used to tell the
compiler what kind of data it is

working on

Binghamton

University

CS-211

Fall 2019

Flow Control Keywords

break case continue default do else for goto
if return switch while

27

These keywords tell the compiler
what order to execute instructions.

Binghamton

University

CS-211

Fall 2019

Miscellaneous Keywords

asm fortran sizeof

28

These keywords tell the compiler to
switch languages, or look up a size.

Binghamton

University

CS-211

Fall 2019

Identifiers

• Function, parameter, and variable names

• Must start with a letter or an underscore
• Underscores usually avoided

• May not contain white space

• After the first letter, can be any number, letter, or underscore

• Identifiers are case sensitive
• “polyArea” is different from “PolyArea”

• Choose names that are descriptive, and easy to type
• “Be4aTgh9_fr37200aBy” is probably not a good choice

29

Binghamton

University

CS-211

Fall 2019

Comments

• Anything starting with /* up to the next */ is a comment
• /* comments may span lines

and continue on to the next line */

• Comments do NOT nest
x=3; /* reset x to 3 */

/* x=3; /* reset x to 3 */ this was a mistake */
^ syntax error… this not declared

• // causes a comment to the end of the line (white space matters)

• Use comments to help reader understand what the code does!
• No need to comment the obvious: a=a+3; // add three to a

• Comments ignored by compiler
30

Oops… x shouldn’t be reset here!
Let’s comment it out

Binghamton

University

CS-211

Fall 2019

Block Comments

/* ---

I like this style of comment because I can add or remove

lines from the comment without special comment reformat

intervention.

Besides, it looks clean.

--*/

31

Binghamton

University

CS-211

Fall 2019

C Statements

• A statement is a list of identifiers, keywords and/or operators that
ends with a semi-colon
• a=a+3;
• int c=7;
• int cent_to_far(int c);

• A C statement may span more than one line in the file
• int MyLongFunctionNamedFunctionThatTakesLotsOfArguments(

int arg1, int arg2, int arg3, int arg4,
int arg5, int arg6, int arg7, int arg8);

• There may be more than one statement on one line in the file
• int a=5; a=a+6; int b; b=cent_to_far(a);

32

Binghamton

University

CS-211

Fall 2019

C Blocks

• A block of statements is a list of statements, surrounded by { and }
• { - Left curly brace
• } – Right curly brace

• A block can be used anywhere a statement can be used

• Blocks of statements can be nested
{ statement1;

{ statement2;
statement3;

}
statement4;

}

33

Inside Block

Outside
Block

