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C Syntax
What the Compiler needs to understand your program 
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Attendance

Please click on A if you are here:

A. I am here today.
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Video Review: Unix Terminal

• History

• Scrolling, Editing, Command History

• Questions?
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Video Review: Files and Folders

• Home directory

• Current directory

• Unix commands: mkdir, rmdir, ls

• Questions?
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Video Review: Compilers

• Running gcc

• Warning and Error Messages

• Running a program

• Questions?
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Question

Please click on the choice that is true:

A. The gcc parameter “-Wall” helps build a wall between your 
code and library code.

B. The gcc parameter “-g” tells the compiler to run garbage 
collection.

C. The gcc parameter “-o HelloWorld” tells the compiler to 
put its output (an executable) in a file called “HelloWorld”.

D. None of the above.
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Exercise Review

• Write a computer program that reads a number, and computes the 
square of that number.
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• Watch the video, available on myCourses
• Content

• Videos
• 3. C Syntax

The C Pre-processor
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Question

Please click on the choice that is true:

A. There are no pre-processor directives in “HelloWorld.c”

B. There is only one pre-processor directive in “HelloWorld.c”

C. There are more than one pre-processor directives in 
“HelloWorld.c”

D. I have no clue what a pre-processor directive is

#include <stdio.h>

int main() {
printf(“Hello World!\n”);
return 0;

}
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C Syntax - in General

• Watch the video, available on myCourses
• Content

• Videos
• 3. C Syntax
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Question

Please click on the choice that is true:

A. There is one block with two statements in “HelloWorld.c”

B. There is one block with three statements in “HelloWorld.c”

C. There are no blocks in “HelloWorld.c”

D. I have no clue what a block is.

#include <stdio.h>

int main() {
printf(“Hello World!\n”);
return 0;

}
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Exercise: interesting.c

Write a C program, based on “Hello World” that prints out something 
interesting about yourself. For instance, what is your favorite thing to 
do in your spare time, or what is the most interesting thing that has 
happened to you recently? A single line of output is OK, but you may 
want to write several lines… just no War and Peace please.
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Resources

• Programming in C, Chapter 3

• C FAQ: C Preprocessor (http://c-faq.com/cpp/index.html)

• Wikipedia: C Preprocessor 
(https://en.wikipedia.org/wiki/C_preprocessor),

• Wikipedia: C Syntax (https://en.wikipedia.org/wiki/C_syntax)

• C FAQ: Style (http://c-faq.com/style/index.html)

• C Syntax Tutorial 
(https://www.tutorialspoint.com/cprogramming/c_basic_syntax.htm) 
or (https://www.studytonight.com/c/c-syntax.php)
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http://c-faq.com/cpp/index.html
https://en.wikipedia.org/wiki/C_preprocessor
https://en.wikipedia.org/wiki/C_syntax
http://c-faq.com/style/index.html
https://www.tutorialspoint.com/cprogramming/c_basic_syntax.htm
https://www.studytonight.com/c/c-syntax.php
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The C Pre-processor
Summary Notes
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The C Compiler

square.c GCC square

Your original C code

Compiler

Executable Machine 
Code

Command: gcc -g –Wall –o square square.c
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The C Compiler

square.c

GCC

square

Your original C code

Compiler

Executable Machine 
Code

Command: gcc -g –Wall –o square square.c

CPP
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GCC

The C Pre-Processor

square.c CPP square.cpp

Your original C code

Handle pre-processor
directives

Pre-processed C code

Command: gcc –E –o square.cpp square.c
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Pre-Processing Directives

• Any line that starts with “#” is a “pre-processor directive”

• Pre-processor consumes that entire line
• Possibly replacing it with other C code

18
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#include directive

• #include <filename>
• Replace directive with contents of filename, as found in the system library

• May contain subdir/filename to search in subdirectory of the system library

• #include “filename”
• Replace directive with contents of filename, as found in current directory

• May contain subdir/filename to search in subdirectory of the current 
directory

• Contents of replaced files are pre-processed as well
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gcc –E output

• C code, 

• pseudo “comment” lines of the form:

# lno “filename” flags

• Where:
• lno is the line number in…

• filename

• flags: 1=“start”, 2=“end”, 3=“library”, 4=“extern”

• See: https://gcc.gnu.org/onlinedocs/cpp/ for complete details

https://gcc.gnu.org/onlinedocs/cpp/
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#define directive

#define name value
• From now on, every instance of name is replaced by value

• name is usually all uppercase

• Value is everything up to final white space on line

• Value can cross lines if ended with a backslash (\)

• Used for compiler constants, e.g.
#define DIME_VALUE 10
value = DIME_VALUE * number_of_dimes;

• Complex #defines for pre-processor macros
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#ifdef directive

#ifdef name or #ifndef name

#endif

• Only include lines between #ifdef and #endif if name is #defined

• Allows multiple implementations e.g.
#ifdef method1

#endif

#ifdef method2

#endif

• Use gcc –Dmethod2 … as an alternative to #define
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C Syntax - in General
Summary Notes



Binghamton

University

CS-211

Fall 2019

White Space

• Needed to separate tokens
• e.g. “then break” are two contiguous keywords, but “thenbreak” is a 

single identifier

• Otherwise, white space is ignored
• “then break” is the same as “then          break” is the same as “then

break”

• Enables programmer to choose formatting preferences

24
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Keywords

asm auto break case char const continue
default do double else enum extern float for
fortran goto if int long register return short
signed sizeof static struct switch typedef
union unsigned void volatile while

25

Keywords have special meaning to 
the compiler, so you can’t use them 

for other names.
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Type Keywords

auto char const double enum extern float int
long register short signed static struct typedef
union unsigned void volatile
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These keywords are used to tell the 
compiler what kind of data it is 

working on
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Flow Control Keywords

break case continue default do else for goto
if return switch while

27

These keywords tell the compiler 
what order to execute instructions.
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Miscellaneous Keywords

asm fortran sizeof

28

These keywords tell the compiler to 
switch languages, or look up a size.
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Identifiers

• Function, parameter, and variable names

• Must start with a letter or an underscore
• Underscores usually avoided

• May not contain white space

• After the first letter, can be any number, letter, or underscore

• Identifiers are case sensitive
• “polyArea” is different from “PolyArea”

• Choose names that are descriptive, and easy to type
• “Be4aTgh9_fr37200aBy” is probably not a good choice

29
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Comments

• Anything starting with /* up to the next */ is a comment
• /* comments may span lines

and continue on to the next line */

• Comments do NOT nest
x=3; /* reset x to 3 */ 

/* x=3; /* reset x to 3 */ this was a mistake */
^ syntax error… this not declared

• // causes a comment to the end of the line (white space matters)

• Use comments to help reader understand what the code does!
• No need to comment the obvious: a=a+3; // add three to a

• Comments ignored by compiler
30

Oops… x shouldn’t be reset here!
Let’s comment it out
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Block Comments

/* -----------------------------------------------

I like this style of comment because I can add or remove

lines from the comment without special comment reformat

intervention.

Besides, it looks clean.

------------------------------------------------*/

31
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C Statements

• A statement is a list of identifiers, keywords and/or operators that 
ends with a semi-colon
• a=a+3;
• int c=7;
• int cent_to_far(int c);

• A C statement may span more than one line in the file
• int MyLongFunctionNamedFunctionThatTakesLotsOfArguments(

int arg1, int arg2, int arg3, int arg4,
int arg5, int arg6, int arg7, int arg8);

• There may be more than one statement on one line in the file
• int a=5; a=a+6; int b; b=cent_to_far(a);

32
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C Blocks

• A block of statements is a list of statements, surrounded by { and }
• { - Left curly brace
• } – Right curly brace

• A block can be used anywhere a statement can be used

• Blocks of statements can be nested
{ statement1; 

{ statement2;  
statement3; 

} 
statement4; 

}

33

Inside Block

Outside 
Block


