
CS-140 1 Section B, Fall 2020

Discussion Questions for “Recursion”
1. Why did the professor modify the Wikipedia definition of “divide and conquer” to one, instead

of two or more sub-problems? (Hint: How would you code a Java recursive routine to calculate

factorials?)

2. Why are Fibonacci numbers interesting? Can you find some applications that might benefit from

being able to calculate a Fibonacci number?

3. What would happen if you invoke fib(-5)? Would the fib function recurse infinitely? Would it

return the “correct” answer?

4. What would happen if you switched the two lines of the fib function? I.E.:

public static int fib(int n) {

return fib(n-1) + fib(n-2);

if (n<2) return n;

}

5. The javaTpoint tutorial on recursion states “It makes the code compact but complex to

understand.” Do you agree? Why is recursion hard to understand?

6. Consider the following mathematic theorem proof:
Theorem: For any non-negative integer, x, then fib(3x) is even, but fib(3x+1) and fib(3x+2) are
odd.
Lemma: Given a+b=c

If a is: And b is: Then a+b=c is

Even Even Even

Even Odd Odd

Odd Even Odd

Odd Odd Even

 Proof by Induction:
For x=0…

fib(3x)=fib(0)=0 =even
fib(3x+1)=fib(1)=1 =odd
Fib(3x+2)=fib(2)=0+1=1 =odd

Assume theorem is true for x-1, prove true for x:

fib(3x) =fib(3x-1) +fib(3x-2)

=even

=fib(3(x-1)+2) +fib(3(x-1)+1)

=odd +odd

fib(3x+1) =fib(3x) +fib(3x-1)

=odd =even + odd

fib(3x+2) =fib(3x+1) +fib(3x)

=odd =odd +even

Q.E.D.

What is the relationship of this inductive proof to recursive programming? Are the same basic

concepts being used? How is an inductive proof different from recursive programming?

