
Binghamton

University

CS-140

Fall 2020

1

Binghamton

University

CS-140

Fall 2020

"Lambda Expression" Intro

• Introduced in Java 8

• Finally "full class functions"!
• at least from the programmer's point of view

• Under the covers, this is still anonymous inner classes

• (parm1,parm2) - > function of parm1 and parm2

• Defines an anonymous method

• If the lambda appears in the context of a single abstract method
interface, the lambda is assumed to implement that interface's method!

2

Binghamton

University

CS-140

Fall 2020

Functions as a First Class Citizen

• If there was just some way of packaging the compareTo function

• And then passing that function as an argument to Arrays.sort

• Then we wouldn’t need an object
• We wouldn’t need a Comparator interface

• We wouldn’t need an anonymous inner class or an explicit class

• We wouldn’t need to pass data to the Arrays.sort method

But how can we “package” a function?

3

Binghamton

University

CS-140

Fall 2020

Lambda Expressions

• Invented by Alonzo Church in the 1930’s

• Method to express an anonymous function

• Supported in Java 1.8

• Simplest form: x -> x*x
• Parameter name comes first

• Then “->” to indicate this is a lambda expression

• Then an expression to evaluate the result

• Can have multiple parameters: (x,y)->x*y

• Can have multiple statements in braces {} with “return”

4

Binghamton

University

CS-140

Fall 2020

History of Lambda Expressions

• 1956 Information Processing Langauge
• Allen Newell, Cliff Shaw, and Herbert Siman at RAND/Carnegie IT

• List processing (dynamic memory, types, recursion, multi-tasking)

• 1958 LISP
• John McCarthy at MIT (IBM summer)

• 2nd major language (after FORTRAN)

• Mixes data and functions

• 1970 SCHEME
• LISP dialect using lambdas

• Guy Steele & Gerald Sussman at MIT

5

https://en.wikipedia.org/wiki/Information_Processing_Language
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Scheme_(programming_language)

Binghamton

University

CS-140

Fall 2020

Lambda Concept

• Provide a way to write a function in Java
• That does not require a class

• That does not require a method

• That can be “encapsulated” and passed around like data

• That is not executed right away… but can be executed when we are ready

• Lambda expressions are a way of writing a function
• Specify parameters

• Specify a return value

• Think of a Lambda as a box around code

6

Binghamton

University

CS-140

Fall 2020

Lambda Expression Syntax

(argument_list) -> return_expression;

• argument_list : a comma separated list of variable names
• Types may be unspecified!

• Types are determined when the lambda expression is used

• return_expression : Any java expression
• Can use variable(s) from the argument list

• Can also use fields and “final” local variables

• Expression value is implicitly “returned”

7

Binghamton

University

CS-140

Fall 2020

Java "Capture"

• When the lambda expression is created, Java "captures" the value
of "this" and keeps it with the lambda expression

• When the lambda expression is evaluated, the CAPTURED value of
"this" is used to evaluate the result!
• This counts as a reference to the object, so garbage collector won't delete

the object until (among other things) the lambda expression is
unreferenced.

• The actual field value is evaluated at runtime!

8

Binghamton

University

CS-140

Fall 2020

Where are Lambda Expressions Used?

• Anywhere an object that implements a “Functional Interfaces” is
required

• A "Functional Interface" requires a single method
• For example Runnable, ActionListener, Comparable

• See java.util.function in the Java library for generic functional interfaces

• Of course, we can write our own functional interfaces as well

9

Binghamton

University

CS-140

Fall 2020

Second Class Lambda Execution!

• In order to execute a lambda expression, we again need to treat the
function as a second class citizen

• Instead of getting the function itself, we get a reference to an "object" that
implements a functional interface

• Use that reference to invoke the method defined by the functional
interface

• The result is that the lambda expression will be evaluated

10

Binghamton

University

CS-140

Fall 2020

Functional Programming

• Includes the concept of applying a function "over" a data structure

• E.g. "map"

11

Scheme
> (map (lambda (x) (* x x)) '(1 2 3 4))
(list 1 4 9 16)

Haskell
map (\x -> x* x) [1, 2, 3, 4]
[1, 4, 9, 16]

Python
>>> a= [1,2,3,4]
>>> list(map(lambda x: x*x ,a))
[1, 4, 9, 16]

C
int* map (int (*f)(int), int len, int array[]) {

int i = 0; int* ret = (int*)malloc(len*sizeof(int));
for(i = 0; i < len; i++) { ret[i] = (*f)(array[i]); }
return ret; }

