Binghamton CS-140
University Fall 2020

Lambda Expressions

MACHINE ASSEMBLY PROCEDURAL OBIJECT ORIENTED FUNCTIONAL

Binghamton CS-140

University Fall 2020

"Lambda Expression" Intro

* Introduced in Java 8

* Finally "full class functions”!
* atleast from the programmer's point of view
* Under the covers, this is still anonymous inner classes

* (parml1,parm?2) - > function of parm1 and parm?2

* Defines an anonymous method

* If the lambda appears in the context of a single abstract method
interface, the lambda is assumed to implement that interface's method!

CS-140
Fall 2020

Binghamton

University

Functions as a First Class Citizen

* If there was just some way of packaging the compareTo function
* And then passing that function as an argument to Arrays.sort

* Then we wouldn’t need an object
* We wouldn’t need a Comparator interface
* We wouldn’t need an anonymous inner class or an explicit class
 We wouldn’t need to pass data to the Arrays.sort method

But how can we “package” a function?

Binghamton CS-140

University Fall 2020

Lambda Expressions

* Invented by Alonzo Church in the 1930’s
* Method to express an anonymous function

* Supported in Java 1.8
 Simplest form: X —> X*X
 Parameter name comes first

* Then “->" to indicate this is a lambda expression
* Then an expression to evaluate the result

 Can have multiple parameters: (X,y)->X*y

* Can have multiple statements in braces {} with “return”

Binghamton CS-140

University Fall 2020

History of Lambda Expressions

* 1956 Information Processing L.angauge
» Allen Newell, Cliff Shaw, and Herbert Siman at RAND /Carnegie IT
* List processing (dynamic memory, types, recursion, multi-tasking)

e 1958 LISP
* John McCarthy at MIT (IBM summer)
* 2nd major language (after FORTRAN)
* Mixes data and functions

* 1970 SCHEME

 LISP dialect using lambdas
* Guy Steele & Gerald Sussman at MIT

https://en.wikipedia.org/wiki/Information_Processing_Language
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Scheme_(programming_language)

Binghamton CS-140

University Fall 2020

Lambda Concept

* Provide a way to write a function in Java
* That does not require a class
e That does not require a method
* That can be “encapsulated” and passed around like data
* That is not executed right away... but can be executed when we are ready

* Lambda expressions are a way of writing a function
» Specify parameters
 Specify a return value

 Think of a Lambda as a box around code

Binghamton CS-140

University Fall 2020

Lambda Expression Syntax

(argument_list) —> return_expression;

» argument list: a comma separated list of variable names
* Types may be unspecified!
* Types are determined when the lambda expression is used

* return_expression : Any java expression
* Can use variable(s) from the argument list
* Can also use fields and “final” local variables
* Expression value is implicitly “returned”

Binghamton CS-140

University Fall 2020

Java "Capture”

 When the lambda expression is created, Java "captures” the value
of "this" and keeps it with the lambda expression

 When the lambda expression is evaluated, the CAPTURED value of
"this" is used to evaluate the result!

* This counts as a reference to the object, so garbage collector won't delete
the object until (among other things) the lambda expression is
unreferenced.

 The actual field value is evaluated at runtime!

Binghamton CS-140

University Fall 2020

Where are Lambda Expressions Used?

* Anywhere an object that implements a “Functional Interfaces” is
required

* A "Functional Interface" requires a single method
* For example Runnable, ActionListener, Comparable
* See java.util.function in the Java library for generic functional interfaces
* Of course, we can write our own functional interfaces as well

Binghamton CS-140

University Fall 2020

Second Class Lambda Execution!

* In order to execute a lambda expression, we again need to treat the
function as a second class citizen

* Instead of getting the function itself, we get a reference to an "object" that
implements a functional interface

* Use that reference to invoke the method defined by the functional
interface

* The result is that the lambda expression will be evaluated

10

Binghamton CS-140

University Fall 2020

Functional Programming

* Includes the concept of applying a function "over" a data structure

* E.g. "map”

Haskell
map (\x -> x*x) [1, 2, 3, 4]
Scheme 1, 4,9, 16]
> (map (lambda (x) (* x x)) '(1 2 3 4))
(IlSt 149]6) Python
>>> a= [1,2,3,4]
>>> list(map(lambda x: x*x ,a))
: [1,4,9,16]
int* map (int (*f)(int), int I_en, int array|[]) {
inti =0; int* ret = (int*)malloc(len*sizeof(int));

for(i = 0; i < len; i++) { ret[i] = (*f)(arrayl[il); }
return ret; }

11

