Binghamton CS-140
University | | Fall 2020

cience Soctal.CLITD
5 a®

=~

E———

P bidiisilibibssitbtiatititi it N I Y
4

Binghamton CS-140

University Fall 2020

What is "first class"?

A programming language is said to have first-class functions if it
treats functions as "first-class citizens" (like data) This means:

* the language supports passing functions as arguments to other
functions,

» returning functions as the values from other functions,

* and assigning functions to variables or storing them in data
structures

* From Wikipedia First Class Function

https://en.wikipedia.org/wiki/First-class_function

Binghamton CS-140

University Fall 2020

Early Java : Second Class Functions

* Define an interface that requires a single abstract function

* e.g. "Comparator" requires a "compare" function
* int compare(T o1, T 02) where T is any "type"

* Make a concrete class which implements the interface

* Pass a reference to an object in the concrete class as an argument
or return value or assignment

* User can invoke the required function by invoking the function
using that reference

Binghamton CS-140

University Fall 2020

Demonstrating Function Passing

* We have an array of Car objects that is not Comparable
* Fields for Make/Model /Year/Owner

* There is an Arrays.sort static method
* Officially: public static <T> void sort(T[] a, Comparator<? super T> c)
* In our case: public static void sort(Car|] a, Comparator<Car> c)

* Second parameter is a reference to an object that is in a class that
impelements the Comparator<Car> interface... i.e. supports
int compare(Car c1,Car c2)

Binghamton CS-140

University Fall 2020

Strategy 1: Verbose, but clear

* Make a new class "CompareByYear" that implements
Comparator<Car> in a java file: "CompareByYear.java”"

 Pass in either an explicit reference to a CompareByYear object, or a
new CompareByYear() to make a reference to a new comparator
object.

* Every different compare function needs a new class and a new
Jjava file

Binghamton CS-140

University Fall 2020

Strategy 2: Multl Class .java file

* Exactly like strategy 1, except, instead of putting the
CompareByMake class in it's own .java file, just put it in the file
where it will be invoked

* Compiler will not allow the comparator class to be public!

* Compiler generates "CompareByMake.class" file

Binghamton CS-140

University Fall 2020

Strategy 3: Named Inner Class

* Put a "CompareByModel" class inside the TestCar class

* Requires a reference to a TestCar object in order to resolve the
inner class.

* But the inner class can now be "public”... it becomes a "member”
of the TestCar class

* Compiler generates "TestCar$CompareByModel.class" file

Binghamton CS-140

University Fall 2020

Strategy 4: Anonymous Inner Class

* Java allows an un-named single object class that implements
Comparator<Car>.

* We can create a reference to that object, or we can bypass keeping
a reference (single use)

* Compiler generates "TestCar$1.class" and "TestCar$2.class"

* For a long time, this was the "best"” way to pass a function as an
argument

Binghamton CS-140

University Fall 2020

"Lambda Expression" Intro

* Introduced in Java 8

* Finally "full class functions”!
* atleast from the programmer's point of view
* Under the covers, this is still anonymous inner classes

* (parml1,parm?2) - > function of parm1 and parm?2

* Defines an anonymous method

* If the lambda appears in the context of a single abstract method
interface, the lambda is assumed to implement that interface's method!

