

SEARCHING

Needles and Haystacks

Problem

You have a long list of things. You occasionally need to retrieve some element of that list, and want to do so quickly and efficiently.

You need to consider...

- How long it takes to add something to your list
- How long it takes to retrieve something from your list
- How long it takes to delete something from your list

Needles: Terminology

- Searching in a list of similar objects
- Each object is composed of a “key” and a “value”
- The “key” is the part of the object that we are searching for
 - Name in an account object
 - time/date in a purchase record
 - etc.
- The “value” is the rest of the information in that object

Solution 1 : Put items in an Array

- If I keep track of highest index so far, and I have room in my array, adding a new element takes about 3 instructions, no matter how big the array is
- If I am searching by array index, then I can find an item with a single instruction
- If I delete an item, I need to move all items below it, so if I have n elements in my array, takes on average $n/2$ moves

Method	Insertion	Search	Deletion
Array key=index	0(1)	0(1)	0(n)

What if index is not the key?

- Suppose I have an array of accounts, and I want to find all accounts owned by a specific named owner
- Inserting a new account takes about 3 instructions
- If there are n accounts, takes n comparisons to find all accounts for a specific owner
 - Number of instructions per compare varies depending on name length and comparison technique
- Deleting an account takes about $n/2$ moves

Method	Insertion	Search	Deletion
Array key=index	$O(1)$	$O(1)$	$O(n)$
Array key!=index	$O(1)$	$O(n)$	$O(n)$

What if the list is sorted by name?

- Can no longer insert at the end... insertion gets much more expensive. First, you have to find out where to insert; then you have to move everything below that point down one: $O(n)$
- A brute force search (top to bottom) now takes on average $n/2$ compares instead of n : $O(n)$
- Deletion is unchanged: $O(n)$

Method	Insertion	Search	Deletion
Array key=index	$O(1)$	$O(1)$	$O(n)$
Array key!=index	$O(1)$	$O(n)$	$O(n)$
Sorted Array	$O(n)$	$O(n)$ (brute force)	$O(n)$

Binary Search of Sorted Items

- To find x in an array of n sorted items...

Chapter 14, Section 6.2

```
int bot=0; int top=n; int guess=n/2;  
while(array[guess] != x) {  
    if (x < array[guess]) top = guess;  
    else bot=guess;  
    guess = bot + (top - bot) / 2;  
}  
}
```

bot

}

guess

top

X

Binary Search of Sorted Items

- To find x in an array of n sorted items...

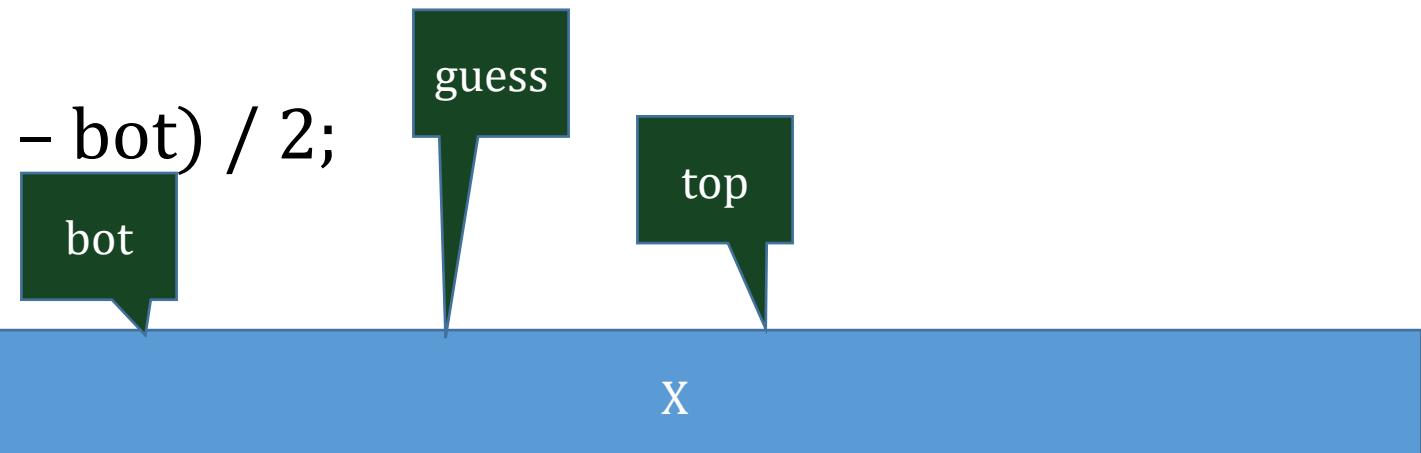
```
int bot=0; int top=n; int guess=n/2;  
while(array[guess] != x) {  
    if (x < array[guess]) top = guess;  
    else bot=guess;  
    guess = bot + (top - bot) / 2;  
}
```



Binary Search of Sorted Items

- To find x in an array of n sorted items...

```
int bot=0; int top=n; int guess=n/2;  
while(array[guess] != x) {  
    if (x < array[guess]) top = guess;  
    else bot=guess;  
    guess = bot + (top - bot) / 2;  
}
```



Binary Search performance

- Each iteration divides the size of the list by 2
 - First iteration works on n items, second iteration works on $n/2$ items, Second iteration works on $n/4$ items, ...
 - m^{th} iteration works on $n/2^m$ items
- If $n < 2^m$ then we must have found x ($n/2^m = 1$)
- Or, $m \leq \log_2(n)$

Method	Insertion	Search	Deletion
Array key=index	$O(1)$	$O(1)$	$O(n)$
Array key!=index	$O(1)$	$O(n)$	$O(n)$
Sorted Array	$O(n)$	$O(n)$ (brute force) $O(\log n)$ (bsearch)	$O(n)$

Binning for Unsorted Items

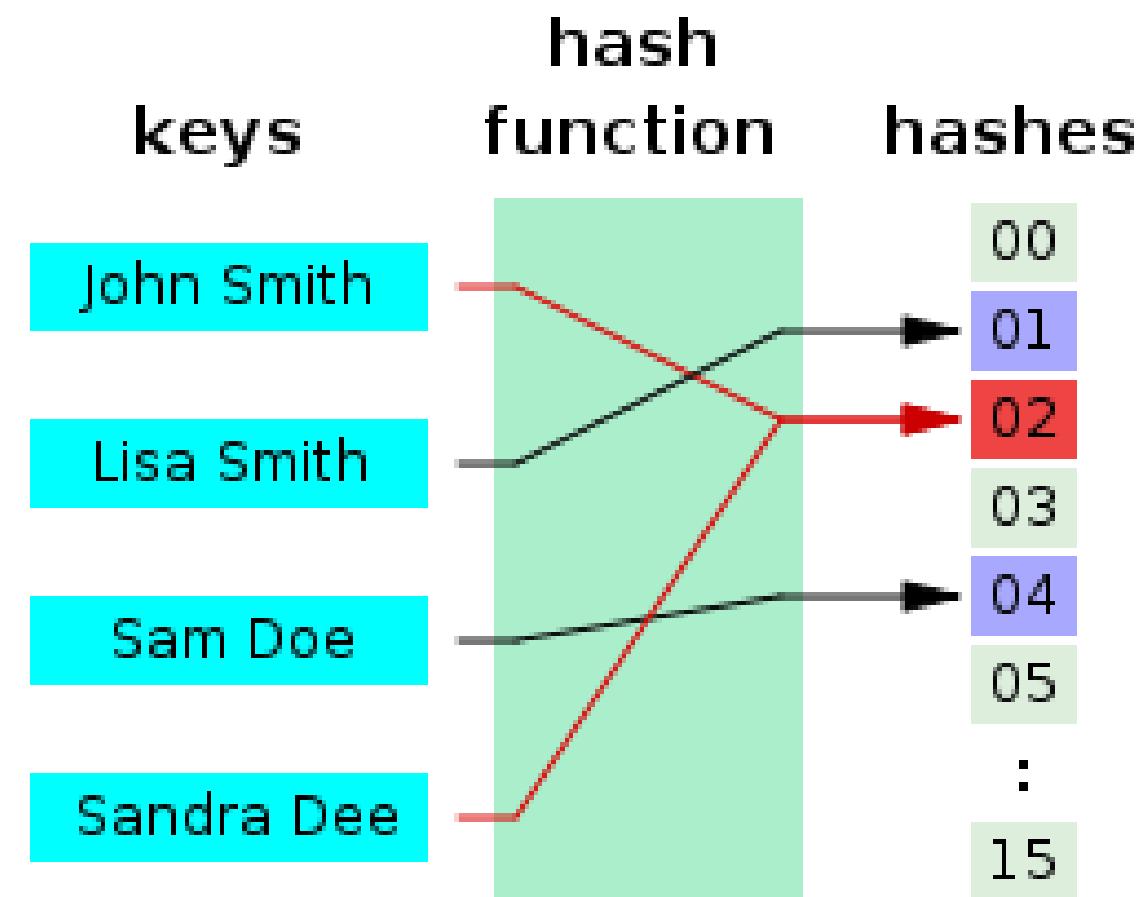
- Keep two or more bins... lists of objects... bins are a list of lists
- Quick function to determine what bin an element belongs in
- Trick is to equalize binsize... so for m bins, binsize $\sim = n/m$
- Time to insert : find bin, add to bin - $O(1)$
- Time to search : find bin, search in bin - $O(n/m)$
- Time to delete : find bin, find in bin, delete - $O(n/m)$
- More bins mean faster access, but more overhead

Hashing

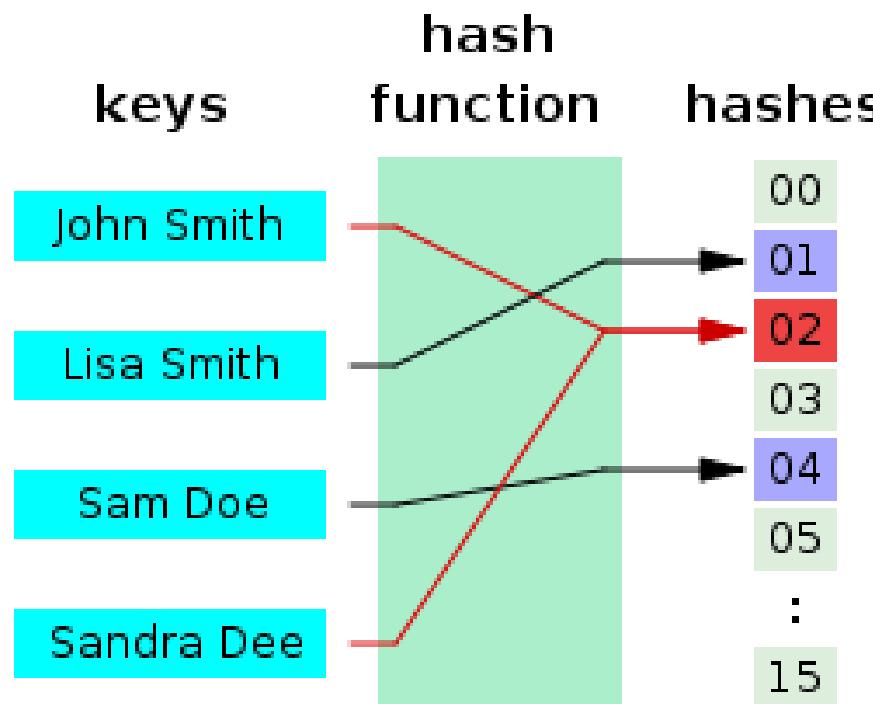
- Pick a fixed bin size: "c"
- Choose number of bins, based on the size of the list
 - $m = n/c$
 - If there are approximately equal number of items in each bin,
 $\text{binsize} = \pm n/m = \pm n/(n/c) = \pm c$
- Find a hash function: $\text{hash(key)} = \text{bin_index}$
 - Guarantee, if $(\text{key}_1 == \text{key}_2)$, then $\text{hash}(\text{key}_1) == \text{hash}(\text{key}_2)$
i.e. the same key always goes to the same bin
- Hash collision allowed, but rare (only c times per bin):
 $\text{key}_1 \neq \text{key}_2$ but $\text{hash}(\text{key}_1) == \text{hash}(\text{key}_2)$

Example Hash

- Translate keys to index 0-15
- Each key hashes to the same index every time
- Multiple keys may map to a single index



Example Hash Table



	Name	Town	ID
0			
1	Lisa Smith	Vestal	6894
2	John Smith	Endicott	1548
	Sandra Dee	Binghamton	6442
3			
4	Sam Doe	Johnson City	2954
5			
...			
15			

Hash Performance

- Insertion: hash function runs quickly, but once we find a bin, we need to insert in that bin. Since binsize= $\pm c$, insertion $O(c)$
- Search: hash function runs quickly, but once we find a bin, we need to search for the key in that bin. Since binsize= $\pm c$, search $O(c)$
- Delete: hash function runs quickly, but once we find a bin, we need to search for the key in that bin. Since binsize= $\pm c$, delete $O(c)$

Method	Insertion	Search	Deletion
Array key=index	$O(1)$	$O(1)$	$O(n)$
Array key!=index	$O(1)$	$O(n)$	$O(n)$
Sorted Array	$O(n)$	$O(n)$ (brute force) $O(\log n)$ (bsearch)	$O(n)$
Hash Map	$O(1)$	$O(1)$	$O(1)$

Using Hash in Java

- All java objects have a hashCode method: Object → int
- HashMap (concrete Collections "Map" implementation)
 - Guesses at n, chooses m so that binsize is constant and low, c
 - Allocates $n/c=m$ bins
 - Gets bin index by `key.hashCode()%m`
 - Manages hash collisions for us automatically
- HashMap depends on valid hashCode
 - Spreads objects over integers randomly
 - Equal objects have the same hashcode

Hash problem

- Integer class hashCode method: return $\text{value} * 100$;
- HashMap has $m = 100$ (100 bins)
- $\text{binIndex} = \text{hashCode}() \% 100 = (\text{value} * 100) \% 100 = 0$
 - All values map to the same bin!!!!
- Solution: hashCode method: return $(\text{value} * \text{prime}) \% (\text{max_int})$
 - No matter what m is, $(\text{value} * \text{prime}) / m$ will distribute evenly