
Binghamton

University

CS-140

Fall 2020

Searching
Needles and Haystacks

1

Binghamton

University

CS-140

Fall 2020

Problem

You have a long list of things. You occasionally need to retrieve some
element of that list, and want to do so quickly and efficiently.

You need to consider…

• How long it takes to add something to your list

• How long it takes to retrieve something from your list

• How long it takes to delete something from your list

2

Binghamton

University

CS-140

Fall 2020

Needles: Terminology

• Searching in a list of similar objects

• Each object is composed of a “key” and a “value”

• The “key” is the part of the object that we are searching for
• Name in an account object

• time/date in a purchase record

• etc.

• The “value” is the rest of the information in that object

3

Binghamton

University

CS-140

Fall 2020

Solution 1 : Put items in an Array

• If I keep track of highest index so far, and I have room in my array,
adding a new element takes about 3 instructions, no matter how
big the array is

• If I am searching by array index, then I can find an item with a
single instruction

• If I delete an item, I need to move all items below it, so if I have n
elements in my array, takes on average n/2 moves

4

Method Insertion Search Deletion

Array key=index O(1) O(1) O(n)

Binghamton

University

CS-140

Fall 2020

What if index is not the key?

• Suppose I have an array of accounts, and I want to find all accounts
owned by a specific named owner

• Inserting a new account takes about 3 instructions

• If there are n accounts, takes n comparisons to find all accounts for
a specific owner
• Number of instructions per compare varies depending on name length

and comparison technique

• Deleting an account takes about n/2 moves

5

Method Insertion Search Deletion

Array key=index O(1) O(1) O(n)

Array key!=index O(1) O(n) O(n)

Binghamton

University

CS-140

Fall 2020

What if the list is sorted by name?

• Can no longer insert at the end… insertion gets much more
expensive. First, you have to find out where to insert; then you
have to move everything below that point down one: O(n)

• A brute force search (top to bottom) now takes on average n/2
compares instead of n: O(n)

• Deletion is unchanged: O(n)

6

Method Insertion Search Deletion

Array key=index O(1) O(1) O(n)

Array key!=index O(1) O(n) O(n)

Sorted Array O(n) O(n) (brute force) O(n)

Binghamton

University

CS-140

Fall 2020

Binary Search of Sorted Items

• To find x in an array of n sorted items…

int bot=0; int top=n; int guess=n/2;

while(array[guess] != x) {

if (x < array[guess]) top = guess;

else bot=guess;

guess = bot + (top – bot) / 2;

}

7

X

bot top

guess

Chapter 14, Section 6.2

Binghamton

University

CS-140

Fall 2020

Binary Search of Sorted Items

• To find x in an array of n sorted items…

int bot=0; int top=n; int guess=n/2;

while(array[guess] != x) {

if (x < array[guess]) top = guess;

else bot=guess;

guess = bot + (top – bot) / 2;

}

8

X

bot
top

guess

Binghamton

University

CS-140

Fall 2020

Binary Search of Sorted Items

• To find x in an array of n sorted items…

int bot=0; int top=n; int guess=n/2;

while(array[guess] != x) {

if (x < array[guess]) top = guess;

else bot=guess;

guess = bot + (top – bot) / 2;

}

9

X

bot
top

guess

Binghamton

University

CS-140

Fall 2020

Binary Search performance

• Each iteration divides the size of the list by 2
• First iteration works on n items, second iteration works on n/2 items,

Second iteration works on n/4 items, …

• mth iteration works on n/2m items

• If n<2m then we must have found x (n/2m = 1)

• Or, m <= log2(n)

10

Method Insertion Search Deletion

Array key=index O(1) O(1) O(n)

Array key!=index O(1) O(n) O(n)

Sorted Array O(n) O(n) (brute force)
O(log n) (bsearch)

O(n)

Binghamton

University

CS-140

Fall 2020

Binning for Unsorted Items

• Keep two or more bins… lists of objects… bins are a list of lists

• Quick function to determine what bin an element belongs in

• Trick is to equalize binsize… so for m bins, binsize ~= n/m

• Time to insert : find bin, add to bin - O(1)

• Time to search : find bin, search in bin – O(n/m)

• Time to delete : find bin, find in bin, delete – O(n/m)

• More bins mean faster access, but more overhead

11

Binghamton

University

CS-140

Fall 2020

Hashing

• Pick a fixed bin size: "c"

• Choose number of bins, based on the size of the list
• m = n/c

• If there are approximately equal number of items in each bin,
binsize= ±n/m = ± n/(n/c) = ±c

• Find a hash function: hash(key)=bin_index
• Guarantee, if (key1==key2), then hash(key1)==hash(key2)

i.e. the same key always goes to the same bin

• Hash collision allowed, but rare (only c times per bin):
key1 != key2 but hash(key1)==hash(key2)

12

Binghamton

University

CS-140

Fall 2020

Example Hash

• Translate keys to
index 0-15

• Each key hashes to
the same index every
time

• Multiple keys may
map to a single index

13

Binghamton

University

CS-140

Fall 2020

Example Hash Table

14

Name Town ID

0

1 Lisa Smith Vestal 6894

2
John Smith Endicott 1548

Sandra Dee Binghamton 6442

3

4 Sam Doe Johnson City 2954

5

…

15

Binghamton

University

CS-140

Fall 2020

Hash Performance

• Insertion: hash function runs quickly, but once we find a bin, we
need to insert in that bin. Since binsize=±c, insertion O(c)

• Search: hash function runs quickly, but once we find a bin, we need
to search for the key in that bin. Since binsize=±c, search O(c)

• Delete: hash function runs quickly, but once we find a bin, we need
to search for the key in that bin. Since binsize=±c, delete O(c)

15

Method Insertion Search Deletion

Array key=index O(1) O(1) O(n)

Array key!=index O(1) O(n) O(n)

Sorted Array O(n) O(n) (brute force)
O(log n) (bsearch)

O(n)

Hash Map O(1) O(1) O(1)

Binghamton

University

CS-140

Fall 2020

Using Hash in Java

• All java objects have a hashCode method: Object → int

• HashMap (concrete Collections "Map" implementation)
• Guesses at n, chooses m so that binsize is constant and low, c

• Allocates n/c=m bins

• Gets bin index by key.hashCode()%m

• Manages hash collisions for us automatically

• HashMap depends on valid hashCode
• Spreads objects over integers randomly

• Equal objects have the same hashcode

16

Binghamton

University

CS-140

Fall 2020

Hash problem

• Integer class hashCode method: return value*100;

• HashMap has m=100 (100 bins)

• binIndex = hashCode()%100 = (value*100)%100 = 0
• All values map to the same bin!!!!

• Solution: hashCode method: return (value*prime)%(max_int)
• No matter what m is, (value*prime)/m will distribute evenly

17

