Binghamton CS-140
Universi Fall 2020

-

Binghamton CS-140

University Fall 2020

Problem

You have a long list of things. You occasionally need to retrieve some
element of that list, and want to do so quickly and efficiently.

You need to consider...
* How long it takes to add something to your list

* How long it takes to retrieve something from your list

* How long it takes to delete something from your list

CS-140
Fall 2020

Binghamton

University

Needles: Terminology

 Searching in a list of similar objects
* Each object is composed of a “key” and a “value”

* The “key” is the part of the object that we are searching for

 Name in an account object
* time/date in a purchase record
* etc.

* The “value” is the rest of the information in that object

Binghamton CS-140

University Fall 2020

Solution 1 : Put items In an Array

* If I keep track of highest index so far, and I have room in my array,
adding a new element takes about 3 instructions, no matter how
big the array is

 [f I am searching by array index, then I can find an item with a
single instruction

e [f [delete an item, [need to move all items below it, so if | have n
elements in my array, takes on average n/2 moves

Array key=index 0(1) 0(1) O(n)

Binghamton CS-140

University Fall 2020

What if index is not the key?

* Suppose I have an array of accounts, and I want to find all accounts
owned by a specific named owner

* Inserting a new account takes about 3 instructions

e If there are naccounts, takes n comparisons to find all accounts for
a specific owner

* Number of instructions per compare varies depending on name length
and comparison technique

* Deleting an account takes about n/2 moves

Array key=index 0(1) 0(1) O(n)
Array key!=index 0(1) O(n) O(n)

CS-140
Fall 2020

Binghamton

University

What if the list Is sorted by name?

* Can no longer insert at the end... insertion gets much more
expensive. First, you have to find out where to insert; then you
have to move everything below that point down one: O(n)

* A brute force search (top to bottom) now takes on average n/?2
compares instead of n-0(n)

* Deletion is unchanged: O(n)

Array key=index 0(1) 0(1) O(n)
Array key!=index 0(1) O(n) O(n)
Sorted Array O(n) O(n) (brute force) O(n)

Binghamton CS-140

University Fall 2020

Binary Search of Sorted Iltems

* To find x in an array of n sorted items... U Chapter 14, Section 6-2]
int bot=0; int top=n; int guess=n/2;

while(array|guess| !=x) {
if (x < array[guess]) top = guess;
else bot=guess;

guess = bot + (top - bot) / 2;

Binghamton CS-140

University Fall 2020

Binary Search of Sorted Iltems

* To find x in an array of n sorted items...
int bot=0; int top=n; int guess=n/2;
while(array[guess]| !=x) {

if (x < array[guess]) top = guess;
else bot=guess;

guess = bot + (top - bot) / 2;

Binghamton CS-140

University Fall 2020

Binary Search of Sorted Iltems

* To find x in an array of n sorted items...
int bot=0; int top=n; int guess=n/2;
while(array[guess]| !=x) {

if (x < array[guess]) top = guess;
else bot=guess;

guess = bot + (top - bot) / 2;

CS-140
Fall 2020

Binghamton

University

Binary Search performance

* Each iteration divides the size of the list by 2

* Firstiteration works on nitems, second iteration works on n/2 items,
Second iteration works on n/4 items, ...

« mtiteration works on n/2™ items

o If n<2”then we must have found x (n/27=1)

* Or, m<=log,(n)

Array key=index 0(1) 0(1) O(n)
Array key!=index 0(1) O(n) O(n)
Sorted Array O(n) O(n) (brute force) O(n)

O(log n) (bsearch)

10

Binghamton CS-140

University Fall 2020

Binning for Unsorted Items

* Keep two or more bins... lists of objects... bins are a list of lists
* Quick function to determine what bin an element belongs in

* Trick is to equalize binsize... so for m bins, binsize ~=n/m

* Time to insert : find bin, add to bin - O(1)

* Time to search : find bin, search in bin - O(n/m)
 Time to delete : find bin, find in bin, delete - O(n/m) |EESEEEESRRIEIE

 More bins mean faster access, but more overhead

11

Binghamton CS-140

University Fall 2020

Hashing

e Pick a fixed bin size: "c

 Choose number of bins, based on the size of the list
*m=n/c
* If there are approximately equal number of items in each bin,
binsize=+n/m =+ n/(n/c) = tc
* Find a hash function: hash(key)=bin_index

* Guarantee, if (key,==key,), then hash(key,)==hash(key,)
i.e. the same key always goes to the same bin

* Hash collision allowed, but rare (only c times per bin):
key, != key, but hash(key,)==hash(key,)

12

Binghamton CS-140

University Fall 2020
Example Hash ek
keys function hashes

* Translate keys to =

index 0-15 John Smith -
* Each key hashes to 02

the same index every Lisa Smith =

time

04

* Multiple keys may >am Doe =

map to a single index

Sandra Dee '
15

13

Binghamton CS-140

University Fall 2020

Example Hash Table

hash __[Name __[Town ___|ID__
0

keys function hashes
John Smith 1 LisaSmith Vestal 6894
01 2 John Smith Endicott 1548
Lisa smith - Sandra Dee Binghamton 6442
03
3
04
sam Doe a5 4 Sam Doe Johnson City 2954
5

Sandra Dee '
15
15

14

Binghamton CS-140

University Fall 2020

Hash Performance

* Insertion: hash function runs quickly, but once we find a bin, we
need to insert in that bin. Since binsize=+c, insertion O(c)

 Search: hash function runs quickly, but once we find a bin, we need
to search for the key in that bin. Since binsize=+-c, search O(c)

* Delete: hash function runs quickly, but once we find a bin, we need
to search for the key in that bin. Since binsize=4-c, delete O(c)

Method | nserton | Search | Deletion __

Array key=index 0(1) 0(1) O(n)
Array key!=index 0(1) O(n) O(n)
Sorted Array O(n) O(n) (brute force) O(n)

O(log n) (bsearch)
Hash Map 0(1) 0(1) 0(1) 15

Binghamton CS-140

University Fall 2020

Using Hash In Java

* All java objects have a hashCode method: Object — int

* HashMap (concrete Collections "Map" implementation)
e Guesses at n, chooses m so that binsize is constant and low, c
* Allocates n/c=m bins
* Gets bin index by key.hashCode()%m
* Manages hash collisions for us automatically

* HashMap depends on valid hashCode
* Spreads objects over integers randomly
* Equal objects have the same hashcode

16

Binghamton CS-140

University Fall 2020

Hash problem

* Integer class hashCode method: return value*100;
* HashMap has m=100 (100 bins)

* binIndex = hashCode()%100 = (value*100)%100 =0

 All values map to the same bin!!!!

* Solution: hashCode method: return (value*prime)%(max_int)
* No matter what m is, (value*prime) /m will distribute evenly

17

