
Binghamton

University

CS-140

Fall 2020

Sorting
QuickSort

1



Binghamton

University

CS-140

Fall 2020

QuickSort Concept

• Divide and Conquer… 
• Split the problem based on a "pivot" – any arbitrary value in the list

• Partition the list:
• items < pivot are to the left

• items >= pivot are to the right

• If a partition has more than one value, apply QuickSort to the partition

2

Left Partition Right Partition

All values < pivot All values >= pivot



Binghamton

University

CS-140

Fall 2020

QuickSort Algorithm

• if range size >1, partition range
• pick a pivot (e.g. first element in range)

• li=0, ri=partition size (li goes right, ri goes left)

• while (li<ri)
• while (list[li] < pivot) li++

• while (list[ri] >= pivot) ri--

• if li<ri, swap list[li] and list[ri]

• When li==ri,
• everything from start of range to  ri-1 is < pivot, 

• everything from ri to end of range is >= pivot

• Sort (recursively) left sub-range (to ri-1) and right sub-range (from ri)

3

Chapter 14
Special Topic 3



Binghamton

University

CS-140

Fall 2020

QuickSort Example

57 54 22 18 37 97 44 74 44 83

4

li ri

Pivot=57

list[li]<pivot 
false



Binghamton

University

CS-140

Fall 2020

QuickSort Example

57 54 22 18 37 97 44 74 44 83

5

ri

Pivot=57

list[li]>=pivot
true

li



Binghamton

University

CS-140

Fall 2020

QuickSort Example

57 54 22 18 37 97 44 74 44 83

6

ri

Pivot=57

li

list[li]>=pivot
false



Binghamton

University

CS-140

Fall 2020

QuickSort Example

57 54 22 18 37 97 44 74 44 83

7

ri

Pivot=57

SWAP

li



Binghamton

University

CS-140

Fall 2020

QuickSort Example

44 54 22 18 37 97 44 74 57 83

8

ri

Pivot=57

SWAP

li



Binghamton

University

CS-140

Fall 2020

QuickSort Example

44 54 22 18 37 97 44 74 57 83

9

ri

Pivot=57

li

list[li]<pivot 
true



Binghamton

University

CS-140

Fall 2020

QuickSort Example

44 54 22 18 37 97 44 74 57 83

10

ri

Pivot=57

li

list[li]<pivot 
true



Binghamton

University

CS-140

Fall 2020

QuickSort Example

44 54 22 18 37 97 44 74 57 83

11

ri

Pivot=57

li

list[li]<pivot 
true



Binghamton

University

CS-140

Fall 2020

QuickSort Example

44 54 22 18 37 97 44 74 57 83

12

ri

Pivot=57

li

list[li]<pivot 
true



Binghamton

University

CS-140

Fall 2020

QuickSort Example

44 54 22 18 37 97 44 74 57 83

13

ri

Pivot=57

li

list[li]<pivot 
true



Binghamton

University

CS-140

Fall 2020

QuickSort Example

44 54 22 18 37 97 44 74 57 83

14

ri

Pivot=57

li

list[li]<pivot 
false



Binghamton

University

CS-140

Fall 2020

QuickSort Example

44 54 22 18 37 97 44 74 57 83

15

ri

Pivot=57

li

list[li]>=pivot
true



Binghamton

University

CS-140

Fall 2020

QuickSort Example

44 54 22 18 37 97 44 74 57 83

16

ri

Pivot=57

li

list[li]>=pivot
true



Binghamton

University

CS-140

Fall 2020

QuickSort Example

44 54 22 18 37 97 44 74 57 83

17

ri

Pivot=57

li

list[li]>=pivot
false



Binghamton

University

CS-140

Fall 2020

QuickSort Example

44 54 22 18 37 97 44 74 57 83

18

ri

Pivot=57

SWAP

li



Binghamton

University

CS-140

Fall 2020

QuickSort Example

44 54 22 18 37 44 97 74 57 83

19

ri

Pivot=57

li

list[li]<pivot 
true



Binghamton

University

CS-140

Fall 2020

QuickSort Example

44 54 22 18 37 44 97 74 57 83

20

ri

Pivot=57

li==ri
Partition

li



Binghamton

University

CS-140

Fall 2020

QuickSort Example

44 54 22 18 37 44 97 74 57 83

21

ri

Pivot=57

Partition



Binghamton

University

CS-140

Fall 2020

QuickSort Example

44 54 22 18 37 44 97 74 57 83

22

ri

Pivot=44

li



Binghamton

University

CS-140

Fall 2020

QuickSort Example

44 54 22 18 37 44 97 74 57 83

23

ri

Pivot=44

li



Binghamton

University

CS-140

Fall 2020

QuickSort Example

37 54 22 18 44 44 97 74 57 83

24

ri

Pivot=44

li



Binghamton

University

CS-140

Fall 2020

QuickSort Example

37 54 22 18 44 44 97 74 57 83

25

ri

Pivot=44

li



Binghamton

University

CS-140

Fall 2020

QuickSort Example

37 54 22 18 44 44 97 74 57 83

26

ri

Pivot=44

li



Binghamton

University

CS-140

Fall 2020

QuickSort Example

37 18 22 54 44 44 97 74 57 83

27

ri

Pivot=44

li



Binghamton

University

CS-140

Fall 2020

QuickSort Example

37 18 22 54 44 44 97 74 57 83

28

ri

Pivot=44

li



Binghamton

University

CS-140

Fall 2020

QuickSort Example

37 18 22 54 44 44 97 74 57 83

29

ri

Pivot=44

li



Binghamton

University

CS-140

Fall 2020

QuickSort Example

37 18 22 54 44 44 97 74 57 83

30

ri

Pivot=44



Binghamton

University

CS-140

Fall 2020

QuickSort Example

37 18 22 54 44 44 97 74 57 83

31

ri

Pivot=37

li



Binghamton

University

CS-140

Fall 2020

QuickSort Example

22 18 37 54 44 44 97 74 57 83

32

ri

Pivot=37

li



Binghamton

University

CS-140

Fall 2020

QuickSort Example

22 18 37 54 44 44 97 74 57 83

33

ri

Pivot=37

li



Binghamton

University

CS-140

Fall 2020

QuickSort Example

22 18 37 54 44 44 97 74 57 83

34

ri

Pivot=37

li



Binghamton

University

CS-140

Fall 2020

QuickSort Example

22 18 37 54 44 44 97 74 57 83

35

ri

Pivot=22

li



Binghamton

University

CS-140

Fall 2020

QuickSort Example

18 22 37 54 44 44 97 74 57 83

36

ri

Pivot=22

li



Binghamton

University

CS-140

Fall 2020

QuickSort Example

18 22 37 54 44 44 97 74 57 83

37

ri

Pivot=22

li



Binghamton

University

CS-140

Fall 2020

QuickSort Example

18 22 37 54 44 44 97 74 57 83

38

ri

Pivot=54

li



Binghamton

University

CS-140

Fall 2020

QuickSort Example

18 22 37 44 44 54 97 74 57 83

39

ri

Pivot=54

li



Binghamton

University

CS-140

Fall 2020

QuickSort Example

18 22 37 44 44 54 97 74 57 83

40

ri

Pivot=54

li



Binghamton

University

CS-140

Fall 2020

QuickSort Example

18 22 37 44 44 54 97 74 57 83

41

ri

Pivot=54

li



Binghamton

University

CS-140

Fall 2020

QuickSort Example

18 22 37 44 44 54 97 74 57 83

42

ri

Pivot=44

li



Binghamton

University

CS-140

Fall 2020

QuickSort Example

18 22 37 44 44 54 97 74 57 83

43

ri

Pivot=97

li



Binghamton

University

CS-140

Fall 2020

QuickSort Example

18 22 37 44 44 54 83 74 57 97

44

ri

Pivot=97

li



Binghamton

University

CS-140

Fall 2020

QuickSort Example

18 22 37 44 44 54 83 74 57 97

45

ri

Pivot=97

li



Binghamton

University

CS-140

Fall 2020

QuickSort Example

18 22 37 44 44 54 83 74 57 97

46

ri

Pivot=83

li



Binghamton

University

CS-140

Fall 2020

QuickSort Example

18 22 37 44 44 54 57 74 83 97

47

ri

Pivot=83

li



Binghamton

University

CS-140

Fall 2020

QuickSort Example

18 22 37 44 44 54 57 74 83 97

48

ri

Pivot=57

li



Binghamton

University

CS-140

Fall 2020

QuickSort Example

18 22 37 44 44 54 57 74 83 97

49

ri

Pivot=57

li



Binghamton

University

CS-140

Fall 2020

QuickSort Analysis Example

57 54 22 18 37 97 44 74 44 83 10

44 44 97 57 6+4=10

37 18 54 44 83 97 3+3+3=9

22 37 44 44 54 57 83 3+2+2=7

18 22 2

-----------------

18 22 37 44 44 54 57 74 83 97 Total: 38

50

10 log210 = 30.103 < 38 < 102 = 100 



Binghamton

University

CS-140

Fall 2020

QuickSort Example

66 39 53 67 59 64 98 90 78 18 10

18 64 67 66 5+5=10

39 66 67 4+4=8

53 67 98 3+3=6

64 90 2+2=4

59 64 78 90 -----------

18 39 53 59 64 66 67 78 90 98 Total: 38

51



Binghamton

University

CS-140

Fall 2020

QuickSort Analysis

• Worst case:
• Partition is always 1 / n-1 – Requires n partitions
• Within partition, we must compare each element (partition size)

෍

𝑠=2

𝑛

𝑠 =
𝑛 × (𝑛 − 1)

2
= 𝑂(𝑛2)

• Best case:
• Partition is in the middle of the range – Requires log2(n) partitions
• Partition size is n/2d where d is the depth
• At a given depth, all n data items will be compared
• Complexity is 𝑂 𝑛 × log2 𝑛

52



Binghamton

University

CS-140

Fall 2020

Why don’t we count swaps?

• In any given partition, number of swaps <= partition size

• Therefore, if we are counting instructions

𝐼 𝑛 = 𝑛 ∗ 𝐼𝑐𝑜𝑚𝑝 + 𝑆𝑤𝑎𝑝𝑃𝑒𝑟𝑐𝑒𝑛𝑡 ∗ 𝑛 ∗ 𝐼𝑠𝑤𝑎𝑝

= 𝑛 ∗ 𝐼𝑐𝑜𝑚𝑝 + 𝑆𝑤𝑎𝑝𝑃𝑒𝑟𝑐𝑒𝑛𝑡 ∗ 𝐼𝑠𝑤𝑎𝑝

= 𝑐 ∗ 𝑛

𝑂 𝐼 𝑛 = 𝑛

53



Binghamton

University

CS-140

Fall 2020

What if array is pre-sorted?

• Picking first (or last) element in range as pivot is simple, but 
causes worst case if array is pre-sorted

• Therefore, we often pick the middle of the range as the pivot
• Doesn’t change performance if elements start randomly

• Improves performance if elements start sorted

• There are still “worst case” scenarios, but much less likely

54



Binghamton

University

CS-140

Fall 2020

QuickSort Advantages

• Performance close to O(n log(n)) complexity
• as good as we can get on sorts
• Larger sized arrays come closer to best case performance
• Better choice of pivot reduces chance of worst case

• No extra memory for array copies required!
• All sorting is done on the original array

• This is the algorithm used in Java
• Also used in C – hence C library function is “qsort”

55


