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QuickSort Concept

* Divide and Conquer...
* Split the problem based on a "pivot" — any arbitrary value in the list

e Partition the list:

* items < pivot are to the left
* items >= pivot are to the right

All values < pivot All values >= pivot

Left Partition Right Partition

e If a partition has more than one value, apply QuickSort to the partition
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QuickSort Algorithm ‘' Chapter 14
Special Topic 3

* if range size >1, partition range
* pick a pivot (e.g. first element in range)
* li=0, ri=partition size (li goes right, ri goes left)
* while (li<ri)
 while (list[li] < pivot) li++
 while (list[ri] >= pivot) ri--
« if li<ri, swap list[li] and list]ri]
* When li==rij,
 everything from start of range to ri-1 is < pivot,
 everything from ri to end of range is >= pivot

* Sort (recursively) left sub-range (to ri-1) and right sub-range (from ri)
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Pivot=57 57 54 22 18 37 97 44 74 44 83

o«

list[li]<pivot
false
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QuickSort Example
Pivot=57 57 54 22 18 37 97 44 74 44 8

o«

list[li]>=pivot
true
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QuickSort Example
Pivot=57 57 54 22 18 37 97 44 74 44 83

o«

list[li]>=pivot
false
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QuickSort Example
Pivot=57 57 54 22 18 37 97 44 74 44 83
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QuickSort Example
Pivot=57 44 54 22 18 37 97 44 74 57 83
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QuickSort Example
Pivot=57 44 54 22 18 37 97 44 74 57 83

list[li]<pivot
true
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QuickSort Example
Pivot=57 44 54 22 18 37 97 44 74 57 83

list[li]<pivot
true
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QuickSort Example
Pivot=57 44 54 22 18 37 97 44 74 57 83

list[li]<pivot
true
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QuickSort Example
Pivot=57 44 54 22 18 37 97 44 74 57 83

list[li]<pivot
true
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QuickSort Example
Pivot=57 44 54 22 18 37 97 44 74 57 83

list[li]<pivot
true
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QuickSort Example
Pivot=57 44 54 22 18 37 97 44 74 57 83

list[li]<pivot
false
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QuickSort Example
Pivot=57 44 54 22 18 37 97 44 74 57 83

* o

list[li]>=pivot
true
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QuickSort Example
Pivot=57 44 54 22 18 37 97 44 74 57 83

T o

list[li]>=pivot
true
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QuickSort Example
Pivot=57 44 54 22 18 37 97 44 74 57 83

18

list[li]>=pivot
false
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QuickSort Example
Pivot=57 44 54 22 18 37 97 44 74 57 83
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QuickSort Example
Pivot=57 44 54 22 18 37 44 97 74 57 83

list[li]<pivot
true
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QuickSort Example
Pivot=57 44 54 22 18 37 44 97 74 57 83

li==ri
Partition
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QuickSort Example
Pivot=57 44 54 22 18 37 44 97 74 57 83
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QuickSort Example
Pivot=44 44 54 22 18 37 44 97 74 57 83

@

@
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QuickSort Example
Pivot=44 44 54 22 18 37 44 97 74 57 83

o @
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QuickSort Example
Pivot=44 37 54 22 18 44 44 97 74 57 83

o @
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QuickSort Example
Pivot=44 37 54 22 18 44 44 97 74 57 83

T o
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QuickSort Example
Pivot=44 37 54 22 18 44 44 97 74 57 83

T o
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QuickSort Example
Pivot=44 37 18 22 54 44 44 97 74 57 83

T o
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QuickSort Example
Pivot=44 37 18 22 54 44 44 97 74 57 83
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QuickSort Example
Pivot=44 37 18 22 54 44 44 97 74 57 83
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QuickSort Example
Pivot=44 37 18 22 54 44 44 97 74 57 83
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QuickSort Example
Pivot=37 37 18 22 54 44 44 97 74 57 83

o
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QuickSort Example
Pivot=37 22 18 37 54 44 44 97 74 57 83

o
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QuickSort Example
Pivot=37 22 18 37 54 44 44 97 74 57 83

ot
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QuickSort Example
Pivot=37 22 18 37 54 44 44 97 74 57 83

@
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QuickSort Example
Pivot=22 22 18 37 54 44 44 97 74 57 83

ot
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QuickSort Example
Pivot=22 18 22 37 54 44 44 97 74 57 83

ot
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QuickSort Example
Pivot=22 18 22 37 54 44 44 97 74 57 83

o
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QuickSort Example
Pivot=54 18 22 37 54 44 44 97 74 57 83

T o
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QuickSort Example
Pivot=54 18 22 37 44 44 54 97 74 57 83

T o
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QuickSort Example
Pivot=54 18 22 37 44 44 54 97 74 57 83
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QuickSort Example
Pivot=54 18 22 37 44 44 54 97 74 57 83

1
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QuickSort Example
Pivot=44 18 22 37 44 44 54 97 74 57 83
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QuickSort Example
Pivot=97 18 22 37 44 44 54 97 74 57 83

* @
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QuickSort Example
Pivot=97 18 22 37 44 44 54 83 74 57 97

* @
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QuickSort Example
Pivot=97 18 22 37 44 44 54 83 74 57 97

1}
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QuickSort Example
Pivot=83 18 22 37 44 44 54 83 74 57 97

T o
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QuickSort Example
Pivot=83 18 22 37 44 44 54 57 74 83 97

T o
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QuickSort Example
Pivot=57 18 22 37 44 44 54 57 74 83 97

ot
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QuickSort Example
Pivot=57 18 22 37 44 44 54 57 74 83 97

L)
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QuickSort Analysis Example

57 54 22 18 37 97 44 74 44 83 10
44 44 97 57 6+4=10
37 18 54 44 83 97 3+3+3=9
22 37 44 44 54 57 83 3+2+2=7
18 22 2
18 22 37 44 44 54 57 74 83 97 Total: 38

10 log,10 = 30.103 <38 < 102=100
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QuickSort Example

66 39 53 67 59 64 98 90 78
13 64 67
39 66
53 67
64 90
59 64 78 90

13

10

66 5+5=10

67 4-
98 3-

-4=8
13=6

-2=4

18 39 53 59 64 66 67 78 90 98 Total: 38
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QuickSort Analysis

* Worst case:
 Partition is always 1 / n-1 - Requires n partitions
* Within partition, we must compare each element (partition size)

z nx(n—l)_O(nZ)

* Best case:
* Partition is in the middle of the range - Requires log,(n) partitions
* Partition size is n/29where d is the depth
» At a given depth, all n data items will be compared
« Complexity is O(n X log, n)
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Why don’t we count swaps?

* In any given partition, number of swaps <= partition size
* Therefore, if we are counting instructions

I(n) =n =l omp + SwapPercent *n * Igq,

=n * (Icomp + SwapPercent x* Iswap)
= C *Nn

O(I(n)) =n
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What if array Is pre-sorted?

* Picking first (or last) element in range as pivot is simple, but
causes worst case if array is pre-sorted

* Therefore, we often pick the middle of the range as the pivot
* Doesn’t change performance if elements start randomly
* Improves performance if elements start sorted
* There are still “worst case” scenarios, but much less likely

54



Binghamton CS-140

University Fall 2020

QuickSort Advantages

* Performance close to O(n log(n)) complexity
* as good as we can get on sorts
» Larger sized arrays come closer to best case performance
 Better choice of pivot reduces chance of worst case

* No extra memory for array copies required!
* All sorting is done on the original array

* This is the algorithm used in Java
* Also used in C - hence C library function is “gsort”
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