Binghamton CS-140
University _ Fall 2020




Binghamton CS-140

University Fall 2020

QuickSort Concept

* Divide and Conquer...
* Split the problem based on a "pivot" — any arbitrary value in the list

e Partition the list:

* items < pivot are to the left
* items >= pivot are to the right

All values < pivot All values >= pivot

Left Partition Right Partition

e If a partition has more than one value, apply QuickSort to the partition



Binghamton CS-140

University Fall 2020

QuickSort Algorithm ‘' Chapter 14
Special Topic 3

* if range size >1, partition range
* pick a pivot (e.g. first element in range)
* li=0, ri=partition size (li goes right, ri goes left)
* while (li<ri)
 while (list[li] < pivot) li++
 while (list[ri] >= pivot) ri--
« if li<ri, swap list[li] and list]ri]
* When li==rij,
 everything from start of range to ri-1 is < pivot,
 everything from ri to end of range is >= pivot

* Sort (recursively) left sub-range (to ri-1) and right sub-range (from ri)



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=57 57 54 22 18 37 97 44 74 44 83

o«

list[li]<pivot
false



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=57 57 54 22 18 37 97 44 74 44 8

o«

list[li]>=pivot
true



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=57 57 54 22 18 37 97 44 74 44 83

o«

list[li]>=pivot
false




Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=57 57 54 22 18 37 97 44 74 44 83

o«

1)




Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=57 44 54 22 18 37 97 44 74 57 83

o«

1)




Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=57 44 54 22 18 37 97 44 74 57 83

list[li]<pivot
true



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=57 44 54 22 18 37 97 44 74 57 83

list[li]<pivot
true

10



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=57 44 54 22 18 37 97 44 74 57 83

list[li]<pivot
true

11



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=57 44 54 22 18 37 97 44 74 57 83

list[li]<pivot
true

12



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=57 44 54 22 18 37 97 44 74 57 83

list[li]<pivot
true

13



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=57 44 54 22 18 37 97 44 74 57 83

list[li]<pivot
false

14



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=57 44 54 22 18 37 97 44 74 57 83

* o

list[li]>=pivot
true

15



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=57 44 54 22 18 37 97 44 74 57 83

T o

list[li]>=pivot
true

16



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=57 44 54 22 18 37 97 44 74 57 83

18

list[li]>=pivot
false

17



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=57 44 54 22 18 37 97 44 74 57 83

18

18



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=57 44 54 22 18 37 44 97 74 57 83

list[li]<pivot
true

19



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=57 44 54 22 18 37 44 97 74 57 83

li==ri
Partition

20



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=57 44 54 22 18 37 44 97 74 57 83

o«

21



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=44 44 54 22 18 37 44 97 74 57 83

@

@

22



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=44 44 54 22 18 37 44 97 74 57 83

o @

23



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=44 37 54 22 18 44 44 97 74 57 83

o @

24



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=44 37 54 22 18 44 44 97 74 57 83

T o

25



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=44 37 54 22 18 44 44 97 74 57 83

T o

26



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=44 37 18 22 54 44 44 97 74 57 83

T o

27



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=44 37 18 22 54 44 44 97 74 57 83

')

28



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=44 37 18 22 54 44 44 97 74 57 83

L §

29



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=44 37 18 22 54 44 44 97 74 57 83

@

30



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=37 37 18 22 54 44 44 97 74 57 83

o

31



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=37 22 18 37 54 44 44 97 74 57 83

o

32



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=37 22 18 37 54 44 44 97 74 57 83

ot

33



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=37 22 18 37 54 44 44 97 74 57 83

@

34



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=22 22 18 37 54 44 44 97 74 57 83

ot

35



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=22 18 22 37 54 44 44 97 74 57 83

ot

36



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=22 18 22 37 54 44 44 97 74 57 83

o

37



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=54 18 22 37 54 44 44 97 74 57 83

T o

38



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=54 18 22 37 44 44 54 97 74 57 83

T o

39



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=54 18 22 37 44 44 54 97 74 57 83

a0

40



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=54 18 22 37 44 44 54 97 74 57 83

1

41



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=44 18 22 37 44 44 54 97 74 57 83

a0

42



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=97 18 22 37 44 44 54 97 74 57 83

* @

43



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=97 18 22 37 44 44 54 83 74 57 97

* @

44



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=97 18 22 37 44 44 54 83 74 57 97

1}

45



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=83 18 22 37 44 44 54 83 74 57 97

T o

46



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=83 18 22 37 44 44 54 57 74 83 97

T o

47



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=57 18 22 37 44 44 54 57 74 83 97

ot

48



Binghamton CS-140

University Fall 2020
QuickSort Example
Pivot=57 18 22 37 44 44 54 57 74 83 97

L)

49



Binghamton CS-140

University Fall 2020

QuickSort Analysis Example

57 54 22 18 37 97 44 74 44 83 10
44 44 97 57 6+4=10
37 18 54 44 83 97 3+3+3=9
22 37 44 44 54 57 83 3+2+2=7
18 22 2
18 22 37 44 44 54 57 74 83 97 Total: 38

10 log,10 = 30.103 <38 < 102=100

50



Binghamton

CS-140
Fall 2020

University

QuickSort Example

66 39 53 67 59 64 98 90 78
13 64 67
39 66
53 67
64 90
59 64 78 90

13

10

66 5+5=10

67 4-
98 3-

-4=8
13=6

-2=4

18 39 53 59 64 66 67 78 90 98 Total: 38

51



Binghamton CS-140

University Fall 2020

QuickSort Analysis

* Worst case:
 Partition is always 1 / n-1 - Requires n partitions
* Within partition, we must compare each element (partition size)

z nx(n—l)_O(nZ)

* Best case:
* Partition is in the middle of the range - Requires log,(n) partitions
* Partition size is n/29where d is the depth
» At a given depth, all n data items will be compared
« Complexity is O(n X log, n)

52



Binghamton CS-140

University Fall 2020

Why don’t we count swaps?

* In any given partition, number of swaps <= partition size
* Therefore, if we are counting instructions

I(n) =n =l omp + SwapPercent *n * Igq,

=n * (Icomp + SwapPercent x* Iswap)
= C *Nn

O(I(n)) =n

53



Binghamton CS-140

University Fall 2020

What if array Is pre-sorted?

* Picking first (or last) element in range as pivot is simple, but
causes worst case if array is pre-sorted

* Therefore, we often pick the middle of the range as the pivot
* Doesn’t change performance if elements start randomly
* Improves performance if elements start sorted
* There are still “worst case” scenarios, but much less likely

54



Binghamton CS-140

University Fall 2020

QuickSort Advantages

* Performance close to O(n log(n)) complexity
* as good as we can get on sorts
» Larger sized arrays come closer to best case performance
 Better choice of pivot reduces chance of worst case

* No extra memory for array copies required!
* All sorting is done on the original array

* This is the algorithm used in Java
* Also used in C - hence C library function is “gsort”

55



