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Need Comparison to Sort

• Given a set of objects, you need to know, for any two objects, a & b
• is a<b, is a==b, or is a>b

• All sorts are built on comparison
• Comparable interface : this.compareTo(that)

• returns a negative integer if this < that
• returns 0 if this==that
• returns a positive integer if this > that

• Comparator interface : compare(this,that)
• Typically implemented as a separate independent concrete class

• Java sorts objects which are "comparable", or uses a "comparator" 
to sort objects.
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Collections Sort Methods

• public static void sort(List<T> list)
• T is any type (class) which extends the Comparable interface (e.g. 

supports "compareTo"

• public static void sort(List<T> list,Comparator<T> c)
• T does not have to implement Comparable

• "c" must be a Comparator of <T>
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Selection sort

• Algorithm:
• Given a list of elements, find the smallest one

• Switch the smallest element with the first element

• Re-apply this algorithm to the remaining items (after the first)
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Chapter 14.1
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Analyzing Selection sort

First Row:

Assume 11 is smallest…

compare 11 to 9, 9 is smaller, so 9 is smallest

compare 17 to 9, 9 is still smallest

compare 9 to 5, 5 is smallest

compare 5 to 12, 5 is smallest
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Analyzing Selection sort
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Number of compares 
required

Note: No Extra Memory is needed!
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Selection Sort Performance O(n2)
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Insertion sort

• Algorithm:
• Given a list of elements, Assume the first is sorted

• Insert the next element in the sorted portion at the correct place

• Repeat with the next unsorted item until the list is sorted

• Also O(n2)
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Chapter 14.2
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Merge Sort

• Algorithm
• If list size > 1, split list in two

• Sort (recursively) each sub-list

• Merge the two sorted sub-lists

• Analysis
• Each merge takes O(n) operations

• Need log2(n) merges

• Total time: n log(n)

• Merge Needs Extra Memory
• Need an entire copy of the array
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Chapter 14.4
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