
Binghamton

University

CS-140

Fall 2020

Sorting
1

Binghamton

University

CS-140

Fall 2020

Need Comparison to Sort

• Given a set of objects, you need to know, for any two objects, a & b
• is a<b, is a==b, or is a>b

• All sorts are built on comparison
• Comparable interface : this.compareTo(that)

• returns a negative integer if this < that
• returns 0 if this==that
• returns a positive integer if this > that

• Comparator interface : compare(this,that)
• Typically implemented as a separate independent concrete class

• Java sorts objects which are "comparable", or uses a "comparator"
to sort objects.

2

Binghamton

University

CS-140

Fall 2020

Collections Sort Methods

• public static void sort(List<T> list)
• T is any type (class) which extends the Comparable interface (e.g.

supports "compareTo"

• public static void sort(List<T> list,Comparator<T> c)
• T does not have to implement Comparable

• "c" must be a Comparator of <T>

3

Binghamton

University

CS-140

Fall 2020

Selection sort

• Algorithm:
• Given a list of elements, find the smallest one

• Switch the smallest element with the first element

• Re-apply this algorithm to the remaining items (after the first)

4

11 9 17 5 12

5 9 17 11 12

5 9 17 11 12

5 9 11 17 12

5 9 11 12 17

Chapter 14.1

Binghamton

University

CS-140

Fall 2020

Analyzing Selection sort

First Row:

Assume 11 is smallest…

compare 11 to 9, 9 is smaller, so 9 is smallest

compare 17 to 9, 9 is still smallest

compare 9 to 5, 5 is smallest

compare 5 to 12, 5 is smallest

5

11 9 17 5 12 4

5 9 17 11 12 3

5 9 17 11 12 2

5 9 11 17 12 1

5 9 11 12 17 10

Binghamton

University

CS-140

Fall 2020

Analyzing Selection sort

෍

𝑖=1

𝑛−1

𝑖 =
𝑛(𝑛 − 1)

2
= 𝑂(𝑛2)

6

11 9 17 5 12 4

5 9 17 11 12 3

5 9 17 11 12 2

5 9 11 17 12 1

5 9 11 12 17 10

Number of compares
required

Note: No Extra Memory is needed!

Binghamton

University

CS-140

Fall 2020

Selection Sort Performance O(n2)

7

0

2000

4000

6000

8000

10000

12000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

Selection Sort Performance

n n squared n(n-1)/2

Binghamton

University

CS-140

Fall 2020

Insertion sort

• Algorithm:
• Given a list of elements, Assume the first is sorted

• Insert the next element in the sorted portion at the correct place

• Repeat with the next unsorted item until the list is sorted

• Also O(n2)

8

11 9 17 5 12

9 11 17 5 12

9 11 17 5 12

5 9 11 17 12

5 9 11 12 17

Chapter 14.2

Binghamton

University

CS-140

Fall 2020

Merge Sort

• Algorithm
• If list size > 1, split list in two

• Sort (recursively) each sub-list

• Merge the two sorted sub-lists

• Analysis
• Each merge takes O(n) operations

• Need log2(n) merges

• Total time: n log(n)

• Merge Needs Extra Memory
• Need an entire copy of the array

9

11 9 17 5 12

11 9 17 5 12

11 9 17 5 12

9 11 17 5 12

9 11 5 12 17

5 9 11 12 17

Chapter 14.4

Split

Merge

