Binghamton CS-140

University Fall 2020

-

Binghamton CS-140

University Fall 2020

Need Comparison to Sort

* Given a set of objects, you need to know, for any two objects,a & b
e isa<b,isa==b, orisa>b

 All sorts are built on comparison

* Comparable interface : this.compareTo(that)
* returns a negative integer if this < that
* returns 0 if this==that
* returns a positive integer if this > that

* Comparator interface : compare(this,that)
* Typically implemented as a separate independent concrete class

* Java sorts objects which are "comparable”, or uses a "comparator”
to sort objects.

Binghamton CS-140

University Fall 2020

Collections Sort Methods

* public static void sort(List<T> list)

* T is any type (class) which extends the Comparable interface (e.g.
supports "compareTo"

* public static void sort(List<T> list,Comparator<T> c)
* T does not have to implement Comparable

* "¢" must be a Comparator of <T>

Binghamton CS-140

University Fall 2020

Selection sort

U Chapter 14.1]

* Algorithm:
e Given a list of elements, find the smallest one
e Switch the smallest element with the first element
* Re-apply this algorithm to the remaining items (after the first)

119 (17| 5 |12
5|19 (171112
5119 (171112
519 (11|17 12
519 11|12 17

Binghamton

CS-140
Fall 2020

University

Analyzing Selection sort

11| 9 |17 | 5 | 12 4
5 9 | 17 | 11 | 12 3
5 9 |17 | 11 | 12 2
5 9 | 11 | 17 | 12 1
5 9 | 11 | 12 | 17 10

First Row:
Assume 11 is smallest...
compare 11 to 9, 9 is smaller, so 9 is smallest
compare 17 to 9, 9 is still smallest
compare 9 to 5, 5 is smallest
compare 5to 12, 5 is smallest

Binghamton

CS-140

University

Analyzing Selection sort

11| 9 |17 | 5 | 12 4
5 9 | 17 | 11 | 12 3
5 9 |17 | 11 | 12 2
5 9 | 11 | 17 | 12 1
5 9 | 11 | 12 | 17 10
n—1

5.

=1

nn—1)

2

Fall 2020

Number of compares
required

Note: No Extra Memory is needed!

= 0(n*)

Binghamton CS-140

University Fall 2020

Selection Sort Performance O(n?)

Selection Sort Performance

12000

10000

8000

6000

4000

2000

0 S ——————
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

— 1] nsquared e==n(n-1)/2

Binghamton CS-140

Fall 2020

University

Insertion sort

U Chapter 14.2]

* Algorithm:
e Given a list of elements, Assume the first is sorted
 Insert the next element in the sorted portion at the correct place
* Repeat with the next unsorted item until the list is sorted

 Also O(n?)

11| 9 |17| 5 |12
9 |11 (17| 5 |12
9 |11 (17| 5 |12
519 |11/17 |12
519 |11/12 |17

Binghamton

CS-140
Fall 2020

University

Merge Sort

* Algorithm

e If list size > 1, splitlist in two

 Sort (recursively) each sub-list

* Merge the two sorted sub-lists

Split —

—

119 |17 | 5 | 12
11| 9 |17 | 5 | 12
11| 9 |17 | 5 | 12
9 (11 | 17| 5 | 12
9 (11| 5 |12 |17
519 11|12 |17

—

Merge

U Chapter 14.41

* Analysis
* Each merge takes O(n) operations
* Need log,(n) merges
* Total time: n log(n)

* Merge Needs Extra Memory
* Need an entire copy of the array

