

PERFORMANCE

How to measure performance?

- Exact measurements are very difficult
 - What else is running on the machine?
 - Will you get different performance on different hardware?
- Estimate using number of Java instructions executed
 - Different implementations of the same algorithm are different.
- Estimate using “Order of” $O(n)$ calculations
 - Gives a rough idea of how many instructions
 - Enables comparison of algorithms

Big O Concept

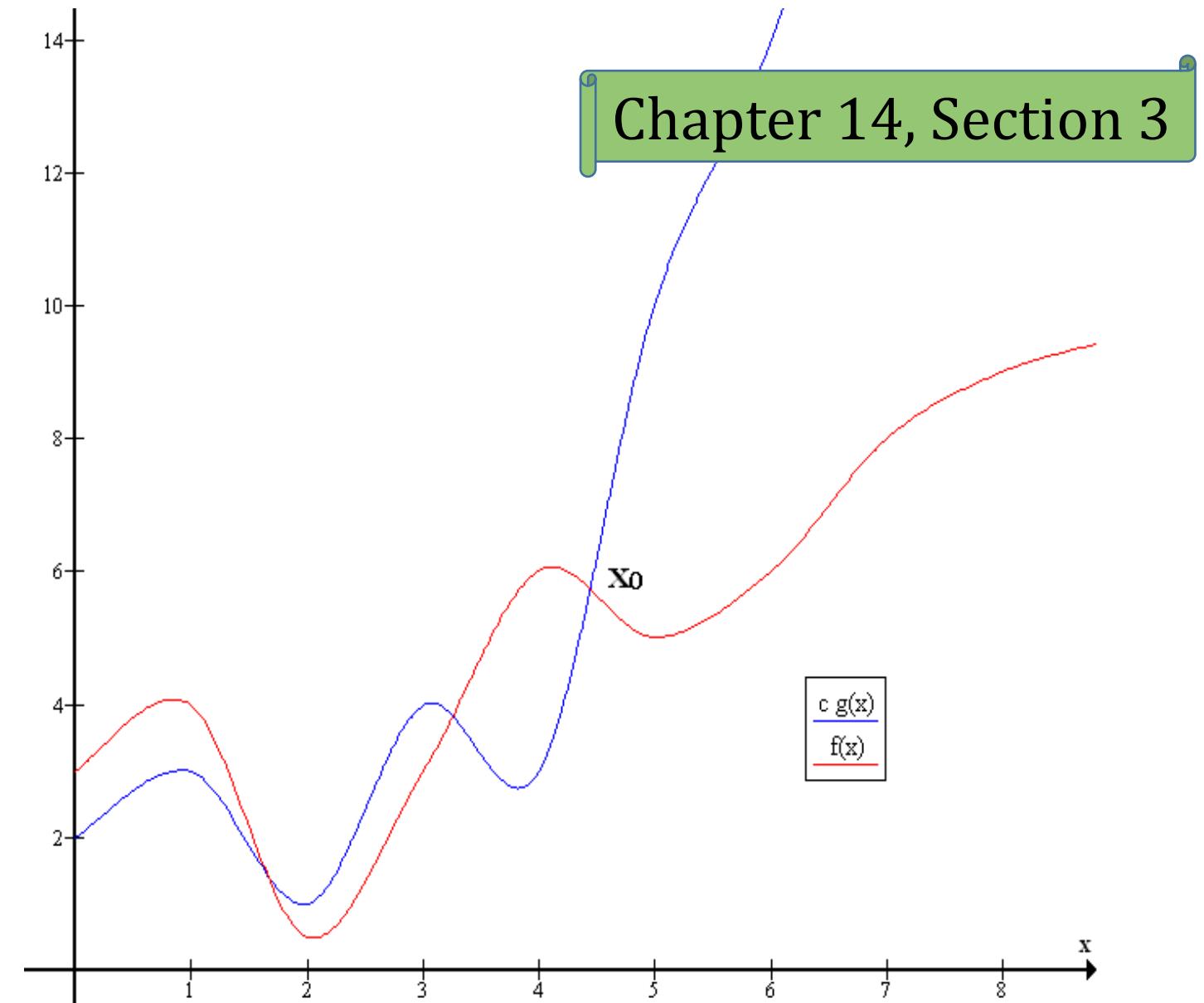
- Model the performance of your algorithm using parameters that control the performance
 - If you are sorting a list, how big is that list?
 - If you are analyzing a picture – how many pixels are there?
- Make the simplest possible model
 - Accuracy is not important
 - Looking for trends
 - Trying to describe the basic idea without worrying about too many details

Formal Definition of Big Oh

$$f(x) = O(g(x))$$

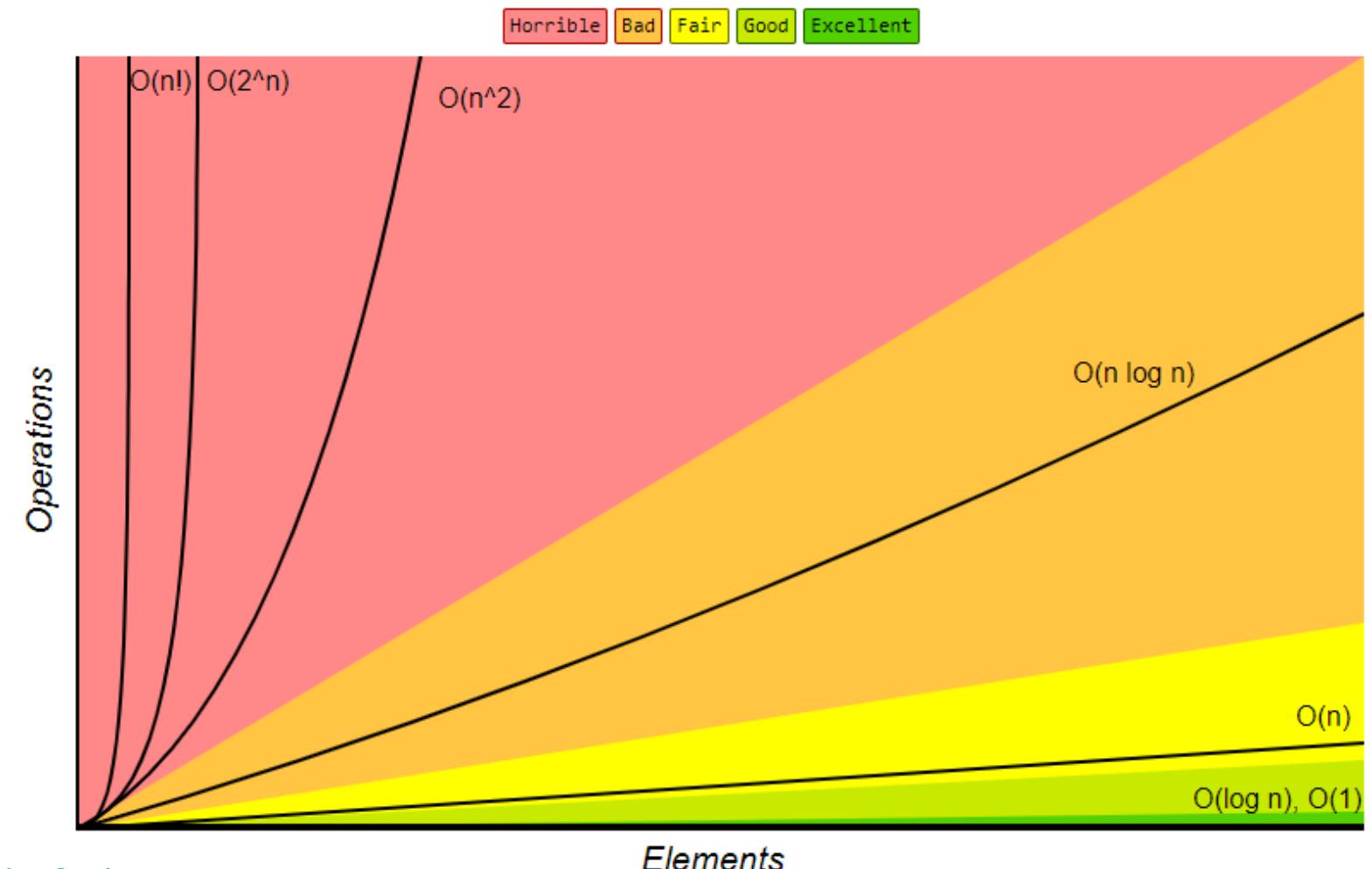
If and only if there exists some positive constant c , and starting point x_0 such that

$$f(x) \leq c \times g(x)
 \forall x > x_0$$



How fast does it grow?

Order	Name
$O(1)$	Constant
$O(\log n)$	Logarithmic
$O(n)$	Linear
$O(n \log n)$	Log Linear
$O(n^c)$	Polynomial
$O(c^n)$	Exponential
$O(n!)$	Factorial



Practical examples of Big Oh

Order	Name	Example
$O(1)$	Constant	Is a number even or odd?
$O(\log n)$	Logarithmic	Binary search of n items
$O(n)$	Linear	Finding an item in an unsorted list of n items
$O(n \log n)$	Log Linear	Sorting a list of n items
$O(n^c)$	Polynomial	Managing graphs with n nodes
$O(c^n)$	Exponential	Travelling salesman with n cities
$O(n!)$	Factorial	Brute Force solution of travelling salesman

Some Examples of Big-O notation

- Game of Life arrayUpdate: $O(n)$ (n =number of cells)
 - arrayUpdate has many instructions in the update loop (constant)
 - arrayUpdate needs two loops through all the cells (constant)
- HashMap insertion $O(n/m)$
 - Where n is the number of elements in the hash map, and m is the number of bins.
 - Assuming $n=c*m$, this is $O(c*m/m) = O(c) = O(1)$ or constant time.
- Naïve Sort : put least element first, move forward
 - To find the least element: $O(n)$
 - Number of times to find the least element $O(n)$
 - Total algorithm: $O(n^2)$ or polynomial time

Performance and Scalability

- Algorithms with constant, linear, or $n \log(n)$ performance can be applied to very large data with little or no performance penalty. These are "scalable"
- Algorithms with polynomial, exponential, or factorial performance can ONLY be applied to very small problems! These are not scalable
- Academics often ignore scalability when innovating. Industry cannot!