AW _ lm..___.wu« Ao(“g_ﬂ__..v,;ﬂic.,lll?-‘..
07,100 g% L *426)
RN T e

n.:...ﬂ a.. lh 14— ﬁwvé : ﬁ g ﬁa'c o—.

m Foe ‘..ﬁm;‘wﬂ,
Q.I lJo m._ﬁlo
- R Y

Fall 2020

L »wﬁi@C.lﬂ.
fr=.>f{¢™

_ "‘C"ﬁ*—

m\s.l
AGQ w“ﬁm—o

.ozsln.

“Pindod EL
b Ll
S o
-q& A.rﬂ ,

EAR T It . e.c ,3
IR i1 & PP u

- " e .f..: —.Zi-l.,)
B ,..Ml IEle @y =0 —m ..u......mﬂw.e@ml...
o i [o4 ' ol] -
.nha m S!/IA. oo*. ,.lamﬁ. Q.WW‘L HR, {125 A8
m_um @ OA...!éEQD ﬂ&y ..n/il (.:t._.... T | imes
mm) mJ i .w. 19| u}.wél -, -....,.‘rp o @|ey

4 -
-~ %

L EL

SreE alagdeT Lt -l Re - agegy, __asll =

Binghamton CS-140

University Fall 2020

The Java Collections Infrastructure

List Map
(ordered) (key,data)

Binghamton CS-140

University Fall 2020

Typical Collection Usage

 All you need is (for instance) the List interface

* Find a concrete class which implements List (e.g. ArrayList)
* Declare field /variable as List

* Instantiate field /variable using concrete class

private List blockList: To use a different implementation,
’ change this line

blockList = new ArrayList<Block>();

Binghamton CS-140

University Fall 2020

Joel Spolsky*: Law of Leaky Abstractions

* We like to think of the world abstractly
* My program uses a list - an ordered collection of elements

* Sometimes we need to know about the concrete implementation
* If the backing store of a list is an array, insertion/deletion can be slow
* If the backing store of a list is a linked list, direct indexing can be slow
* Both act as lists, but one does some list things better than the other
 We may want to choose an implementation based on our application

"Author of Joel on Softwareblog, co-founded Stack Overflow

Binghamton CS-140

University Fall 2020

Some Classes implementing Set

* EnumSet - Backing store: bit vector
* Requires small fixed enumerated domain
 Very fast add, remove, contains (one cycle)

* + methods: allOf(t) clone() complementOf(s) copyOf(c) noneOf(t) of(...e)
range(from,to)

* HashSet - Backing store: HashMap
e constant time add, remove, contains, and size
e Slow traversal

* LinkedHashSet - Backing Store: HashMap + linked list

e stabilizes "order" of the set

* TreeSet - Backing Store: TreeMap
* log(n) time add, remove, and contains

Binghamton CS-140

University Fall 2020

Some Classes implementing List

* ArrayList - Backing store: array
* Fast direct access to elements
* Occasional slow add/delete to enlarge/shrink array
 Slower insert/delete from beginning of list

* LinkedList - Backing store: Doubly linked list of nodes
e constant time add, remove
» Slow direct access - iterate is faster
* Also implements Deque and Queue interfaces

* Vector — Backing Store: array-like, but with shrink and grow
* Thread safe, but slower than ArrayList

Binghamton

University

ArrayList vs. array

CS-140
Fall 2020

ArrayList

Declare

Instantiate

Read element i

Write element i

add element at end

all element in the middle
Shrink/Enlarge

Enhanced loop

Performance

typel| var

new typelsize]

vari]

varli|=value

instantiate new larger/smaller
array and copy old to new

for(type v: var) { }
Good

ArrayList<type> var
(type must extend Object)

new ArrayList<type>()
var.get(i)
var.set(i,value)
var.add(value)
var.add(i,value)

Automatic

for(type v: var) { }

Equal except inserting early and
when grow or shrink is needed

Binghamton CS-140

University Fall 2020

Some Classes Implementing Map

* EnumMap - Backing Store: array
* Requires small fixed enumerated key domain
» Very fast

 HashMap - backing store - array?
» Very fast insert/delete
* Slow/unstable traversal

* HashTable - Thread safe hash map
* LinkedHashMap - backing store: hash map with linked list

 Stabilizes and speeds up traversal
* TreeMap
 WeakHashMap

Binghamton CS-140

University Fall 2020

Binning for Unsorted Items

* Keep two or more bins... lists of objects... bins are a list of lists
* Quick function to determine what bin an element belongs in

* Trick is to equalize binsize... so for m bins, binsize ~=n/m
 Time to insert : find bin, add to bin - fast

* Time to search : find bin, search in bin - O(n/m)
 Time to delete : find bin, find in bin, delete - O(n/m) |EESEEEESRRIEIE

* More bins mean faster access, but more memory

Binghamton CS-140

University Fall 2020

Ultimate binning

* Separate bin for each item

* Problem... need a specialized function to determine what bin
element x is in

* Needs to run fast
* Needs to guarantee that if two elements are the same, they go to the same
bin
* Needs to guarantee that two different elements go to different bins
* Problem: Sparse usage... most bins remain unused
* Consider a bin for each Lottery number - e.g. pick 6: 45 55 32 91 40 46
* There are 10'? possible lottery tickets!

10

Binghamton CS-140

University Fall 2020

Hashing

* Hashing is a form of a binning algorithm
* Function to translate from “key” to an index in an array
* Number of bins = number of elements in the array

* The function that performs the translation is a “hash” function
index = hash(key)

* Guarantee: if key,==key,, then hash(key,)==hash(key,)

* Not guaranteed: if key, != key,, then hash(key,)=7hash(key,)
* “Hash Collision” if key, != key,, but hash(key,)==hash(key,)
* Hash function designed to minimize collisions

11

Binghamton CS-140

University Fall 2020
Example Hash ek
keys function hashes

* Translate keys to =

index 0-15 John Smith -
* Each key hashes to 02

the same index every Lisa Smith =

time

04

* Multiple keys may >am Doe =

map to a single index

Sandra Dee '
15

12

Binghamton CS-140

University Fall 2020

Example Hash Table

hash __[Name __[Town ___|ID__
0

keys function hashes
John Smith 1 LisaSmith Vestal 6894
01 2 John Smith Endicott 1548
Lisa smith - Sandra Dee Binghamton 6442
03
3
04
sam Doe a5 4 Sam Doe Johnson City 2954
5

Sandra Dee '
15
15

13

Binghamton CS-140

University Fall 2020

Warning: Modifying Collections in loops

for (Block b : blockList) {
if (Ib.isUsed()) blocklist.remove(b);

J
/* ALTERNATE... */
for (int i=0; i<blocklist.size();i++) {
if ('blocklist.get(i).isUsed())
* Question: do any of these work? blocklist.remove(i):
}

/* ALTERNATE 2 ... */

for (Iterator it=blocklist.iterator(); it.hasNext();) {
Block b = it.next();
if (Ib.isUsed()) it.remove();

} 14

