
Binghamton

University

CS-140

Fall 2020

1

Binghamton

University

CS-140

Fall 2020

The Java Collections Infrastructure

Collection

Set

(no dup)

List

(ordered)

Map

(key,data)

2

Binghamton

University

CS-140

Fall 2020

Typical Collection Usage

• All you need is (for instance) the List interface

• Find a concrete class which implements List (e.g. ArrayList)

• Declare field/variable as List

• Instantiate field/variable using concrete class

private List blockList;

…

blockList = new ArrayList<Block>();

3

To use a different implementation,
change this line

Binghamton

University

CS-140

Fall 2020

Joel Spolsky*: Law of Leaky Abstractions

• We like to think of the world abstractly
• My program uses a list – an ordered collection of elements

• Sometimes we need to know about the concrete implementation
• If the backing store of a list is an array, insertion/deletion can be slow

• If the backing store of a list is a linked list, direct indexing can be slow

• Both act as lists, but one does some list things better than the other

• We may want to choose an implementation based on our application

*Author of Joel on Software blog, co-founded Stack Overflow

4

Binghamton

University

CS-140

Fall 2020

Some Classes implementing Set

• EnumSet – Backing store: bit vector
• Requires small fixed enumerated domain
• Very fast add, remove, contains (one cycle)
• + methods: allOf(t) clone() complementOf(s) copyOf(c) noneOf(t) of(…e)

range(from,to)

• HashSet - Backing store: HashMap
• constant time add, remove, contains, and size
• Slow traversal

• LinkedHashSet – Backing Store: HashMap + linked list
• stabilizes "order" of the set

• TreeSet – Backing Store: TreeMap
• log(n) time add, remove, and contains

5

Binghamton

University

CS-140

Fall 2020

Some Classes implementing List

• ArrayList – Backing store: array
• Fast direct access to elements

• Occasional slow add/delete to enlarge/shrink array

• Slower insert/delete from beginning of list

• LinkedList - Backing store: Doubly linked list of nodes
• constant time add, remove

• Slow direct access – iterate is faster

• Also implements Deque and Queue interfaces

• Vector – Backing Store: array-like, but with shrink and grow
• Thread safe, but slower than ArrayList

6

Binghamton

University

CS-140

Fall 2020

ArrayList vs. array

Function array ArrayList

Declare type[] var ArrayList<type> var
(type must extend Object)

Instantiate new type[size] new ArrayList<type>()

Read element i var[i] var.get(i)

Write element i var[i]=value var.set(i,value)

add element at end --- var.add(value)

all element in the middle --- var.add(i,value)

Shrink/Enlarge instantiate new larger/smaller
array and copy old to new

Automatic

Enhanced loop for(type v : var) { } for(type v : var) { }

Performance Good Equal except inserting early and
when grow or shrink is needed

7

Binghamton

University

CS-140

Fall 2020

Some Classes Implementing Map

• EnumMap – Backing Store: array
• Requires small fixed enumerated key domain
• Very fast

• HashMap – backing store – array?
• Very fast insert/delete
• Slow/unstable traversal

• HashTable – Thread safe hash map

• LinkedHashMap – backing store: hash map with linked list
• Stabilizes and speeds up traversal

• TreeMap

• WeakHashMap

8

Binghamton

University

CS-140

Fall 2020

Binning for Unsorted Items

• Keep two or more bins… lists of objects… bins are a list of lists

• Quick function to determine what bin an element belongs in

• Trick is to equalize binsize… so for m bins, binsize ~= n/m

• Time to insert : find bin, add to bin - fast

• Time to search : find bin, search in bin – O(n/m)

• Time to delete : find bin, find in bin, delete – O(n/m)

• More bins mean faster access, but more memory

9

Binghamton

University

CS-140

Fall 2020

Ultimate binning

• Separate bin for each item

• Problem… need a specialized function to determine what bin
element x is in
• Needs to run fast

• Needs to guarantee that if two elements are the same, they go to the same
bin

• Needs to guarantee that two different elements go to different bins

• Problem: Sparse usage… most bins remain unused
• Consider a bin for each Lottery number – e.g. pick 6: 45 55 32 91 40 46

• There are 1012 possible lottery tickets!

10

Binghamton

University

CS-140

Fall 2020

Hashing

• Hashing is a form of a binning algorithm

• Function to translate from “key” to an index in an array

• Number of bins = number of elements in the array

• The function that performs the translation is a “hash” function
𝑖𝑛𝑑𝑒𝑥 = ℎ𝑎𝑠ℎ(𝑘𝑒𝑦)

• Guarantee: if key1==key2, then hash(key1)==hash(key2)

• Not guaranteed: if key1 != key2, then hash(key1)=?hash(key2)

• “Hash Collision” if key1 != key2, but hash(key1)==hash(key2)

• Hash function designed to minimize collisions

11

Binghamton

University

CS-140

Fall 2020

Example Hash

• Translate keys to
index 0-15

• Each key hashes to
the same index every
time

• Multiple keys may
map to a single index

12

Binghamton

University

CS-140

Fall 2020

Example Hash Table

13

Name Town ID

0

1 Lisa Smith Vestal 6894

2
John Smith Endicott 1548

Sandra Dee Binghamton 6442

3

4 Sam Doe Johnson City 2954

5

…

15

Binghamton

University

CS-140

Fall 2020

Warning: Modifying Collections in loops

• Question: do any of these work?

14

/* ALTERNATE… */
for (int i=0; i<blocklist.size();i++) {

if (!blocklist.get(i).isUsed())
blocklist.remove(i);

}

/* ALTERNATE 2 … */
for (Iterator it=blocklist.iterator(); it.hasNext();) {

Block b = it.next();
if (!b.isUsed()) it.remove();

}

for (Block b : blockList) {
if (!b.isUsed()) blocklist.remove(b);

}

