
Binghamton

University

CS-140

Fall 2020

1

Binghamton

University

CS-140

Fall 2020

Abstract Definition

abstract: existing in thought or as an idea but not
having a physical or concrete existence

abstract method: A method name, it's arguments,
and return type, but no Java instructions. Here's a
method that should exist, but doesn't have a concrete
set of instructions yet.

2

Binghamton

University

CS-140

Fall 2020

Interface: Simple Definition

An interface is a list of abstract method definitions.

3

Binghamton

University

CS-140

Fall 2020

Defining Interfaces

• An interface, like a class, goes in it's own .java file

• Interface names (like a classes) start with uppercase letter

• Interface Syntax:

• abstract keyword is implied – not required in method declarations

• Warning: methods in interfaces must be public!

4

package pkg_name;

interface interface_name {
abstract_method_declarations;

}

Binghamton

University

CS-140

Fall 2020

Implementing Interfaces

• Classes may implement one or more interfaces

• Implements syntax:

• If a class implements an interface, it is like inheriting all the
abstract method definitions in that interface

• Either the class must be an abstract class

OR

• The class must contain concrete definitions for all the methods

5

class class_name implements interface_name
{

…
}

Binghamton

University

CS-140

Fall 2020

Example Interface

6

package xmp_interface;

interface Countable {
public boolean isEmpty();
public int size();

}

Countable.java
package xmp_interface;

class Blocks implements Countable {
private ArrayList<Block> blocks;
…
public boolean isEmpty() {

return blocks.isEmpty(); }
public int size() {

return blocks.size(); }
…

}

Blocks.java

Binghamton

University

CS-140

Fall 2020

Why Interfaces?

• Interfaces are more powerful than classes!

• Interfaces define capabilities (like an adjective)
• If I know that a class implements an interface then I know at least some of

what I can do to/on objects in that class

• If I only use methods defined in the interface, I can create code which will
work on ANY class which implements that interface!

• Interface standardizes common methods
• If I learn "isEmpty()" for ArrayLists, I know "isEmpty()" for Blocks, …

7

Binghamton

University

CS-140

Fall 2020

Interfaces as Types

• You can declare a reference variable as a reference to an interface!

• You may assign that reference variable to any object in a class
which implements that interface!

• You may invoke any methods defined in the interface.

• Interface acts like a sub-type of all classes which implement that
interface

8

Binghamton

University

CS-140

Fall 2020

Countable

XYZ implements CountableBlocks

Interface as Type graphically

9

Binghamton

University

CS-140

Fall 2020

Interfaces as Abstractions

• An interface is an abstract view of a feature of a set of classes
• Like an adjective which can modify multiple nouns

• Within these classes, there must be a concrete implementation of that
feature

• Outside of these classes, we can write software which manages the
abstraction
• Only depends on the methods defined in the interface
• Can be used on ANY object that implements that interface

• Gives us all the power of Object Orientation
• inheritance, sub-typing, polymorphism, dynamic typing

• But using a simpler, more intuitive mechanism!

10

