
Binghamton

University

CS-140

Fall 2020

1

Throwing Exceptions

Binghamton

University

CS-140

Fall 2020

What is an Exception?

“When a program violates the semantic constraints of the Java
programming language, the Java Virtual Machine signals this error
to the program as an exception.”

• While the JVM is interpreting your bytecode, things can go wrong
• e.g. array bounds exceeded, divide by zero, etc.

• The JVM creates an exception and “throws” that exception
• It may or may not be “caught”

2

Chapter 11, Section 4

Binghamton

University

CS-140

Fall 2020

Typical Exceptions…

• null pointer exceptions

• array bounds exceptions

• illegal argument exceptions

• arithmetic exceptions (e.g. divide by zero)

• illegal casting exceptions

3

Binghamton

University

CS-140

Fall 2020

Throwing Exceptions

throw exception;
• exception is an expression that resolves to a reference to an object

which is in (or is derived from) the “Throwable” class

• The throw statement always stops the current execution flow
• Even if you throw null (throws NullPointerException)

• Even if your throw expression has a run-time problem

if (arg<0) throw new IllegalArgumentExpression(

“Argument must be a positive number”);

4

Binghamton

University

CS-140

Fall 2020

Creating a new Exception Object

• Look in the Java library for an appropriate exception class
• There are hundreds and hundreds of options out there

• Create a new exception using the "new" keyword
• Exceptions have a constructor with a single "String message" parameter

Use that one… the others are for more complicated cases

• The message string should describe what went wrong

• The "program stack" is captured by the exception when the object
is created

• Program stack tells which instruction you are running (see next slide)

• Therefore, almost always "throw new…"

5

Binghamton

University

CS-140

Fall 2020

Program Stack Example

• Java invokes TestShapes main method
• TestShapes.main invokes Rectangle.toString()

• Rectangle.toString invokes super.toString which is Shape.toString
• Shape.toString throws an exception

• Program Stack:
• Shape.java:16 – null pointer exception

• Rectangle.java:20 – invocation of super.toString()

• TestShape.java:15 – implicit invocation of Rectangle.toString()

6

Binghamton

University

CS-140

Fall 2020

Uncaught Exceptions

• If an exception is thrown and not caught the program ends

• A message is printed that contains:
• The name of the exception

• The "message" associated with the exception

• The program stack

Exception in thread "main" java.lang.NullPointerException
at inherShapes.Shape.toString(Shape.java:16)
at inherShapes.Rectangle.toString(Rectangle.java:20)
at java.base/java.lang.String.valueOf(String.java:2951)
at inherShapes.TestShapes.main(TestShapes.java:15).java:15)

7

Binghamton

University

CS-140

Fall 2020

Why throw exceptions?

• If you determine that your program cannot continue correctly,
throw an exception

• Causes program to end

• Gives information to the user about what went wrong

• Alternative: every method returns a return code
• If the method worked, return a good return code

• If the method did not work, return a bad return code

• Whenever that method is invoked, if return code is bad, handle it

• Lots of work for things that (almost) never happen

8

Binghamton

University

CS-140

Fall 2020

Exceptions v. Input Verification

• Exceptions are not very user friendly
• Program halts

• Prints out lines of source code, which user has no clue about

• Don't use exceptions for user input verification
• Verify user input in your own code

• Make user friendly messages if check fails

• Recover or exit gracefully from failed checks

• Use exceptions for programming errors

9

Binghamton

University

CS-140

Fall 2020

Overdoing Exceptions

• If something is truly exceptional, let Java handle it

• Avoid the temptation of coding for every possible contingency

• Consider throwing exceptions when assumptions are violated
• IllegalArgumentException if the argument to your function is bad

• Unsupported Method exception for abstract methods you are too lazy to
implement

• etc.

10

