Binghamton CS-140
University Fall 2020

e e A C, B

-



Binghamton CS-140

University Fall 2020

What Is an Exception?

U Chapter 11, Section 4]

“When a program violates the semantic constraints of the Java
programming language, the Java Virtual Machine signals this error
to the program as an exception.”

* While the JVM is interpreting your bytecode, things can go wrong
* e.g. array bounds exceeded, divide by zero, etc.

* The JVM creates an exception and “throws” that exception
* It may or may not be “caught” R g




Binghamton CS-140

University Fall 2020

Typical Exceptions...

* null pointer exceptions

* array bounds exceptions

* illegal argument exceptions

* arithmetic exceptions (e.g. divide by zero)
* illegal casting exceptions



Binghamton CS-140

University Fall 2020

Throwing Exceptions

throw exception;

* exception is an expression that resolves to a reference to an object
which is in (or is derived from) the “Throwable” class

* The throw statement always stops the current execution flow
* Even if you throw null (throws NullPointerException)
* Even if your throw expression has a run-time problem

if (arg<0) throw new lllegalArgumentExpression(
“Argument must be a positive number”);



Binghamton CS-140

University Fall 2020

Creating a new Exception Object

* Look in the Java library for an appropriate exception class
* There are hundreds and hundreds of options out there

* Create a new exception using the "new" keyword

* Exceptions have a constructor with a single "String message"” parameter
Use that one... the others are for more complicated cases

* The message string should describe what went wrong

* The "program stack"” is captured by the exception when the object
is created
* Program stack tells which instruction you are running (see next slide)
* Therefore, almost always "throw new..."



Binghamton CS-140

University Fall 2020

Program Stack Example

* Java invokes TestShapes main method

* TestShapes.main invokes Rectangle.toString()

* Rectangle.toString invokes super.toString which is Shape.toString
* Shape.toString throws an exception

* Program Stack:
* Shape.java:16 - null pointer exception
* Rectangle.java:20 - invocation of super.toString()
* TestShape.java:15 - implicit invocation of Rectangle.toString()



Binghamton CS-140

University Fall 2020

Uncaught Exceptions

* If an exception is thrown and not caught the program ends
* A message is printed that contains:

* The name of the exception
* The "message” associated with the exception
* The program stack

Exception 1n thread "main" java.lang.NullPointerException
at i1nherShapes.Shape.toString(Shape.java:16)
at inherShapes.Rectangle.toString(Rectangle.java:20)

at java.base/java.lang.String.valueof(String.java:2951)
at i1nherShapes.TestShapes.main(TestShapes.java:15).




Binghamton CS-140

University Fall 2020

Why throw exceptions?

* [f you determine that your program cannot continue correctly,
throw an exception
* Causes program to end
* Gives information to the user about what went wrong

* Alternative: every method returns a return code
* If the method worked, return a good return code
e If the method did not work, return a bad return code
« Whenever that method is invoked, if return code is bad, handle it
* Lots of work for things that (almost) never happen



Binghamton CS-140

University Fall 2020

Exceptions v. Input Verification

* Exceptions are not very user friendly
* Program halts
* Prints out lines of source code, which user has no clue about

* Don't use exceptions for user input verification
 Verify user input in your own code
* Make user friendly messages if check fails
* Recover or exit gracefully from failed checks

* Use exceptions for programming errors



Binghamton CS-140

University Fall 2020

Overdoing Exceptions

* If something is truly exceptional, let Java handle it
* Avoid the temptation of coding for every possible contingency

* Consider throwing exceptions when assumptions are violated
* [llegal ArgumentException if the argument to your function is bad

« Unsupported Method exception for abstract methods you are too lazy to
implement

* efc.

10



