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The Universal Class
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Class Hierarchy
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The Universal "Object" Class

• If you define a class with no "extends" keyword, Java implicitly 
adds "extends Object"

• The Object class is defined in the Java library

• Therefore, all objects are descendants of the Object class
• All objects inherit the Object class fields and methods!

• All classes can override Object class methods
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Object.toString

• The library implementation is:

public String toString() {

return getClass().getName() + '@' + 
Integer.toHexString(hashCode());

}

• Overriding toString is recommended
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Object.getClass()

• Returns an object of type "Class<T>", where T is the class or a 
sub-class of the reference object

Number n = 0;
Class<? extends Number> c = n.getClass();

• The returned Class object is the dynamic type of the reference 
object.

• Look up Class in the java library… use this to get:
• class name, package name, methods, fields, parent class, etc.
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Object.equals(Object obj)

• In Java, refa == refb returns true if refa and refb are referencing 
the exact same object

• Suppose refa and refb point to two different objects with similar 
data?

• refa==refb is "false", refa.equals(refb) can return "true"!
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equals properties

• Reflexive: a.equals(a) should always return true

• Symetric: if a.equals(b) is true, then b.equals(a) should be true

• Transitive: if a.equals(b) and b.equals(c) are true, then a.equals(c) 
should be true

• Consistent: if a.equals(b) is true, and a and b do not change, then 
a.equals(b) should return true

• Not null: For any non-null reference, a, a.equals(null) should 
return false
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Object.equals implementation

public boolean equals(Object obj) {

if (obj==null) return false;

return (obj == this); //pessimistic implementation!

}
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Less Pessimistic Override

public class Rectangle extends Shape {

…

@Override public boolean equals(Object obj) {

if (!(obj instanceof Rectangle)) return false;

Rectangle r = (Rectangle) obj; // Explicit down-cast

return super.equals(r) && 

r.width==this.width && 

r.height == this.height);

}
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hashCode

• More later, but for now, think of the hashCode function as 
something which returns a semi-unique integer for each object

• Hash codes are used for quick look-up of an object

• For now, we only need worry about the rule:

“If two objects are equal according to the equals(Object) method, 
then calling the hashCode method on each of the two objects must 
produce the same integer result.”
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hashCode vs. equals

This is OK… Java likes  this… This is NOT OK… java has a problem
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a.hash()==b.hash()

a.hash()==b.hash()

a.equals(b) a.equals(b)
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Example hashCode

@Override public int hashCode() {

Double widthBoxed = width;

Double heightBoxed = height;

return super.hashCode() +

widthBoxed.hashCode() + 

heightBoxed.hashCode();

}
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