
Binghamton

University

CS-140

Fall 2020

1

The Universal Class



Binghamton

University

CS-140

Fall 2020

Class Hierarchy

2

Object

Animal

Duck

Eiderdown

Cow

Shape

Rectangle Circle

Triangle



Binghamton

University

CS-140

Fall 2020

The Universal "Object" Class

• If you define a class with no "extends" keyword, Java implicitly 
adds "extends Object"

• The Object class is defined in the Java library

• Therefore, all objects are descendants of the Object class
• All objects inherit the Object class fields and methods!

• All classes can override Object class methods

3



Binghamton

University

CS-140

Fall 2020

Object.toString

• The library implementation is:

public String toString() {

return getClass().getName() + '@' + 
Integer.toHexString(hashCode());

}

• Overriding toString is recommended

4



Binghamton

University

CS-140

Fall 2020

Object.getClass()

• Returns an object of type "Class<T>", where T is the class or a 
sub-class of the reference object

Number n = 0;
Class<? extends Number> c = n.getClass();

• The returned Class object is the dynamic type of the reference 
object.

• Look up Class in the java library… use this to get:
• class name, package name, methods, fields, parent class, etc.

5

Generic type specification 
not required



Binghamton

University

CS-140

Fall 2020

Object.equals(Object obj)

• In Java, refa == refb returns true if refa and refb are referencing 
the exact same object

• Suppose refa and refb point to two different objects with similar 
data?

• refa==refb is "false", refa.equals(refb) can return "true"!

6

refa
Rectangle

ll (0,0)

width
height

5.0

5.0

refb
Rectangle

ll (0,0)

width
height

5.0

5.0



Binghamton

University

CS-140

Fall 2020

equals properties

• Reflexive: a.equals(a) should always return true

• Symetric: if a.equals(b) is true, then b.equals(a) should be true

• Transitive: if a.equals(b) and b.equals(c) are true, then a.equals(c) 
should be true

• Consistent: if a.equals(b) is true, and a and b do not change, then 
a.equals(b) should return true

• Not null: For any non-null reference, a, a.equals(null) should 
return false

7



Binghamton

University

CS-140

Fall 2020

Object.equals implementation

public boolean equals(Object obj) {

if (obj==null) return false;

return (obj == this); //pessimistic implementation!

}

8



Binghamton

University

CS-140

Fall 2020

Less Pessimistic Override

public class Rectangle extends Shape {

…

@Override public boolean equals(Object obj) {

if (!(obj instanceof Rectangle)) return false;

Rectangle r = (Rectangle) obj; // Explicit down-cast

return super.equals(r) && 

r.width==this.width && 

r.height == this.height);

}

9



Binghamton

University

CS-140

Fall 2020

hashCode

• More later, but for now, think of the hashCode function as 
something which returns a semi-unique integer for each object

• Hash codes are used for quick look-up of an object

• For now, we only need worry about the rule:

“If two objects are equal according to the equals(Object) method, 
then calling the hashCode method on each of the two objects must 
produce the same integer result.”

10

Special Topic 15.1



Binghamton

University

CS-140

Fall 2020

hashCode vs. equals

This is OK… Java likes  this… This is NOT OK… java has a problem

11

a.hash()==b.hash()

a.hash()==b.hash()

a.equals(b) a.equals(b)



Binghamton

University

CS-140

Fall 2020

Example hashCode

@Override public int hashCode() {

Double widthBoxed = width;

Double heightBoxed = height;

return super.hashCode() +

widthBoxed.hashCode() + 

heightBoxed.hashCode();

}

12


