Binghamton CS-140
Fall 2020

::..‘“4" - .




Binghamton CS-140
University Fall 2020

Class Hierarch

Object

Shape Animal

Rectangle Circle Duck Cow

Eiderdown
Triangle




Binghamton CS-140

University Fall 2020

The Universal "Object" Class

* If you define a class with no "extends" keyword, Java implicitly
adds "extends Object”

* The Object class is defined in the Java library

* Therefore, all objects are descendants of the Object class
 All objects inherit the Object class fields and methods!
 All classes can override Object class methods



Binghamton CS-140

University Fall 2020

Object.toString

* The library implementation is:
public String toString() {

return getClass().getName() + '@' +
Integer.toHexString(hashCode());

* Overriding toString is recommended



Binghamton CS-140

University Fall 2020

Object.getClass()

* Returns an object of type "Class<T>", where T is the class or a
sub-class of the reference object Generic type specification

_N. not required
= Q:

Number
Class@ds Number> c = n.getClass();

* The returned Class object is the dynamic type of the reference
object.

* Look up Class in the java library... use this to get:
* class name, package name, methods, fields, parent class, etc.



Binghamton CS-140

University Fall 2020

Object.equals(ODbject ob))

* In Java, refa == refb returns true if refa and refb are referencing
the exact same object

* Suppose refa and refb point to two different objects with similar

refa data? refb
-_,/ Rectangle h -_,/ Rectangle h
o (0,0) o (0,0)
width 5.0 width 5.0
height 50 height 5 ()
AL = K >/

- refa==refb is "false", refa.equals(refb) can return "true"!



Binghamton CS-140

University Fall 2020

eqguals properties

* Reflexive: a.equals(a) should always return true
* Symetric: if a.equals(b) is true, then b.equals(a) should be true

 Transitive: if a.equals(b) and b.equals(c) are true, then a.equals(c)
should be true

 Consistent: if a.equals(b) is true, and a and b do not change, then
a.equals(b) should return true

* Not null: For any non-null reference, a, a.equals(null) should
return false



Binghamton CS-140

University Fall 2020

Object.equals implementation

public boolean equals(Object obj) {
if (obj==null) return false;
return (obj == this); //pessimistic implementation!



Binghamton CS-140

University Fall 2020

Less Pessimistic Override

public class Rectangle extends Shape {

@Override public boolean equals(Object obj) {
if (I(obj instanceof Rectangle)) return false;
Rectangle r = (Rectangle) obj; // Explicit down-cast
return super.equals(r) &&
r.width==this.width &&
r.height == this.height);



CS-140

Binghamton
Fall 2020

University

hashCode

U Special Topic 15.1]
* More later, but for now, think of the hashCode function as

something which returns a semi-unique integer for each object
* Hash codes are used for quick look-up of an object

* For now, we only need worry about the rule:

“If two objects are equal according to the equals(Object) method,
then calling the hashCode method on each of the two objects must

produce the same integer result.”

10



Binghamton CS-140

University Fall 2020

hashCode vs. equals

This is OK... Java likes this... This is NOT OK... java has a problem

a.hash()==b.hash()
a.hash()==b.hash()

a.equals(b) a.equals(b)

11



Binghamton CS-140

University Fall 2020

Example hashCode

@Override public int hashCode() {
Double widthBoxed = width;
Double heightBoxed = height;
return super.hashCode() +

widthBoxed.hashCode() +
heightBoxed.hashCode();

12



