
Binghamton

University

CS-140

Fall 2020

Overriding Methods
1



Binghamton

University

CS-140

Fall 2020

Override Occurs When…

• Parent class has a visible non-static method
• A method which would normally be inherited by a child class

• Child class has the same method with the same parameters
• Child class method overrides inherited parent method

• When a reference to the parent invokes the method, 
the parent method is invoked

• When a reference to the child invokes the method, 
the child method is invoked

2



Binghamton

University

CS-140

Fall 2020

Virtual Method Table (VMT)
• Internal table computed at compile time by Java for each class

• Columns: 1- List of method names, 2 - Pointer to method code

3

Shape VMT

Method Code

Shape(Point) Shape.java:6

move(double,double) Shape.java:7

min() Shape.java:8

toString() Shape.java:9

Rectangle VMT

Method Code

super(Point) Shape.java:6

Rectangle(Point,double,double) Rectangle.java:8

move(double,double) Shape.java:7

min() Shape.java:8

max() Rectangle.java:14

perimeter() Rectangle.java:16

area() Rectangle.java:17

toString() Rectangle.java:19

super.toString() Shape.java:9

overridden method

overriding method



Binghamton

University

CS-140

Fall 2020

Dynamic Dispatching

• When a non-static method is invoked:

1. Java run-time determines the dynamic type of the reference

2. Java looks up the method in the dynamic type VMT

3. Java invokes the code using the second column of the VMT

• Static methods do not use dynamic dispatch

4



Binghamton

University

CS-140

Fall 2020

The @Override compiler annotation

• You may precede a method with @Override
@Override public String toString() {

• If @Override is present, compiler will issue an error message if 
the method does not override some ancestor's method

• If @Override is not present, the method may or may not override 
some ancestor's method (no checking)

5



Binghamton

University

CS-140

Fall 2020

The “final” keyword

• If a method is declared as final, sub-class CANNOT override!

public final boolean checkPassword(String pwd) {
…

} // no-one can change this in a subclass

• If a class is declared as “final”, no sub-classes!

public final class String {
…

} // cannot make a subclass

6



Binghamton

University

CS-140

Fall 2020

The "super" keyword

• The "super" keyword refers to the VMT of the parent
• You cannot use super.childMethod() or you get a compiler error

• The "super" keyword "affects" the dynamic type of "this"
• If child "toString" overrides parent "toString", then this.super.toString() 

invokes the parent toString method!

• Note: Constructors cannot be overriden

7



Binghamton

University

CS-140

Fall 2020

Private Methods

• A private method is not visible from outside the class

• If a private method is invoked from inside the class it will ALWAYS 
run the class method, 

• even if the reference has a dynamic sub-type that "overrides" that 
method!

• This makes private methods an exception to dynamic typing!
• private methods do not respect the dynamic type of the reference

• Even though the super-class may have a method with the same name that 
seemingly "overrides" the private method

8



Binghamton

University

CS-140

Fall 2020

@Override ok

Example of Dynamic Dispatch

public class Parent {

void who() { System.out.println(“parent”); }

public static void main(String[] args) {

Child c = new Child(); // c static type = dynamic type = Child

Parent p = c; // p static type = Parent, dynamic type = Child

System.out.print("c.who() is: "); c.who();

System.out.print("p.who() is: "); p.who();

}

}

public class Child extends Parent {

@Override public void who() { System.out.println(“child”); }

}

9

Prints : “child”

Prints : “child”



Binghamton

University

CS-140

Fall 2020

@Override causes compiler error

Example Private Method

public class Parent {

private void who() { System.out.println(“parent”); }

public static void main(String[] args) {

Child c = new Child(); // c static type = dynamic type = Child

Parent p = c; // p static type = Parent, dynamic type = Child

System.out.print("c.who() is: "); c.who();

System.out.print("p.who() is: "); p.who();

}

}

public class Child extends Parent {

public void who() { System.out.println(“child”); }

}

10

Prints : “parent”

Prints : “child”



Binghamton

University

CS-140

Fall 2020

Default Method Visibility

• If you do not specify “private”, “public”, or “protected”, you get 
“package private” visibility

• “package private” methods behave like public methods within the 
package

• “package private” methods behave like private methods if invoked 
from outside the package… i.e. invisible

• Also can violate dynamic typing… if static type is within package, and 
"override" is external to package, package private method within the 
package is invoked

11



Binghamton

University

CS-140

Fall 2020

Protected Methods

• Behave like public methods if invoked within the package

• Visible within a descendant class, even if outside the package
• And, you can only override from a descendant class

• That means protected method respect dynamic typing!

• Invisible outside package from non-descendant classes!

12



Binghamton

University

CS-140

Fall 2020

Method Visibility / Overridability

Method Access Overridable Visible/Invocable

Private No Within class

"Package Private" Within package Within package

Protected
Every descendant 

class
Within package or
descendant class

Public
Every descendant 

class
Everywhere

13



Binghamton

University

CS-140

Fall 2020

Method Invocation

1. For static method invocation, find method in the specified class.

2. If there is a private method referenced by the static type in this 
class/package, invoke it

3. Otherwise, Dynamic Dispatch… 
1. determine the dynamic type of the reference

2. Look up the method in the dynamic type VMT

3. Invoke the code using the second column of the VMT

14


