Binghamton CS-140
University Fall 2020

K

o=

'}

OvérrldanMethods

)).

Binghamton CS-140

University Fall 2020

Override Occurs When...

 Parent class has a visible non-static method
* A method which would normally be inherited by a child class

* Child class has the same method with the same parameters
* Child class method overrides inherited parent method

* When a reference to the parent invokes the method,
the parent method is invoked

* When a reference to the child invokes the method,
the child method is invoked

Binghamton CS-140

University Fall 2020

Virtual Method Table (VMT)

* Internal table computed at compile time by Java for each class
 Columns: 1- List of method names, 2 - Pointer to method code

Shape VMT Rectangle VMT

Method Code Method Code
Shape(Point) Shape.java:6 super(Point) Shape.java:6
move(double,double) | Shape.java:7 Rectangle(Point,double,double) | Rectangle.java:8
min() Shape.java:8 move(double,double) Shape.java:7
toString() Shape.java:9 min() Shape.java:8
max() Rectangle.java:14
overridden method perimeter() Rectangle.java:16
area() Rectangle.java:17

L -toStrin Rectangle.java:19
overriding method 80 =)
super.toString() Shape.java:9 3

Binghamton CS-140

University Fall 2020

Dynamic Dispatching

* When a non-static method is invoked:
1. Javarun-time determines the dynamic type of the reference
2. Javalooks up the method in the dynamic type VMT

3. Javainvokes the code using the second column of the VMT

* Static methods do not use dynamic dispatch

Binghamton CS-140

University Fall 2020

The @Override compiler annotation

* You may precede a method with @Override
@Override public String toString() {

 If @Override is present, compiler will issue an error message if
the method does not override some ancestor's method

 If @Override is not present, the method may or may not override
some ancestor's method (no checking)

Binghamton CS-140

University Fall 2020

The “final” keyword

* [f a method is declared as final, sub-class CANNOT override!

public final boolean checkPassword(String pwd) {

} // no-one can change this in a subclass

e [f a class is declared as “final”, no sub-classes!
public final class String {

} // cannot make a subclass

Binghamton CS-140

University Fall 2020

The "super" keyword

* The "super” keyword refers to the VMT of the parent
* You cannot use super.childMethod() or you get a compiler error

* The "super” keyword "affects” the dynamic type of "this"

* If child "toString" overrides parent "toString", then super.toString()
invokes the parent toString method!

 Note: Constructors cannot be overriden

Binghamton CS-140

University Fall 2020

Private Methods

* A private method is not visible from outside the class

* If a private method is invoked from inside the class it will ALWAYS
run the class method,

* even if the reference has a dynamic sub-type that "overrides” that
method!

* This makes private methods an exception to dynamic typing!
* private methods do not respect the dynamic type of the reference

* Even though the super-class may have a method with the same name that
seemingly "overrides” the private method

Binghamton CS-140

University Fall 2020

Example of Dynamic Dispatch

public class Parent {
void who() { System.out.println(*parent”); }
public static void main(String[] args) {
Child ¢ = new Child(); // c static type = dynamic type = Child
Parent p = c; // p static type = Parent, dynamic type = Child

System.out.print("c.who() is: "); c.who();
System.out.print("p.who() is: "); p.who()m
}

public class Child extends Parent {
@Override public void who() { System.out.printin(“child”); }

}

}

@Override ok

Binghamton CS-140

University Fall 2020

Example Private Method

public class Parent {
private void who() { System.out.println("parent”); }
public static void main(String[] args) {
Child ¢ = new Child(); // c static type = dynamic type = Child
Parent p = c; // p static type = Parent, dynamic type = Child

System.out.print("c.who() is: "); c.who();
System.out.print("p.who() is: "); p.who()m

}
5

public class Child extends Parent {
public void who() { System.out.printin(“child”); }

Prints : “parent”

}

@Override causes compiler error

10

Binghamton CS-140

University Fall 2020

Default Method Visibility

* If you do not specify “private”, “public”, or “protected”, you get
“package private” visibility

* “package private” methods behave like public methods within the
package

* “package private” methods behave like private methods if invoked
from outside the package... i.e. invisible

 Also can violate dynamic typing... if static type is within package, and
"override" is external to package, package private method within the
package is invoked

11

Binghamton CS-140
Fall 2020

University

Protected Methods

* Behave like public methods if invoked within the package

* Visible within a descendant class, even if outside the package
* And, you can only override from a descendant class
* That means protected method respect dynamic typing!

* Invisible outside package from non-descendant classes!

12

Binghamton

CS-140

University

Method Visibility / Overridability

Method Access
Private

"Package Private”

Protected

Public

Overridable
No

Visible /Invocable
Within class

Within package

Within package

Every descendant
class

Within package or
descendant class

Every descendant
class

Fall 2020

13

Binghamton CS-140

Fall 2020

University

Method Invocation

1. For static method invocation, find method in the specified class.

2. If there is a private method referenced by the static type in this
class/package, invoke it

3. Otherwise, Dynamic Dispatch...
1. determine the dynamic type of the reference
2. Look up the method in the dynamic type VMT
3. Invoke the code using the second column of the VMT

14

