CS-140
Spring 2021

Binghamton
University

Binghamton CS-140

University Spring 2021

What Is a Data Structure

* A method of organizing data to enable problem solving

* a collection of data values, the relationships among them, and the
functions or operations that can be applied to the data.

Wegner, Peter; Reilly, Edwin D. (2003-08-29). Encyclopedia of Computer Science.
Chichester, UK: John Wiley and Sons. pp. 507-512. ISBN 978-0470864128.

* Arguably, the key organizing factor in software design

http://dl.acm.org/citation.cfm?id=1074100.1074312
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0470864128

CS-140

?Ji;ligvlelﬁsl?ttyon Spring 2021
Object / Class as a Data Structure 7%
V¥

- =
* Creates a "relationship” between the fields in a single object
 All fields describe the same object

* Define the ways of accessing and manipulating that data through
methods

Binghamton CS-140

University Spring 2021

Singly Linked List

* Fast insertion if you know where to insert

* Easy to grow and shrink

* Low "overhead" (but more than arrays)

* Always starts at "head”

* Easy to move forward, hard to move backward!

Binghamton CS-140

University Spring 2021

Doubly Linked List

* Each node contains a "prev" reference to it's predecessor
» as well as a "next" pointer to what comes after

 Usually track both head and tail, so we can start from either end

* Almost the same as a singly linked list, but more overhead and
book-keeping traded off for better performance in some
applications.

* See the details in the example code

Binghamton CS-140

University Spring 2021

Tree Binary Tree

leaves

root

CS-140
Spring 2021

CS-140
Spring 2021

Binghamton

University

A tree node class....

private class TreeNode {
orivate int payload;
orivate TreeNode left;
orivate TreeNode right;

// Standard constructor, getters and setters
// and toString

Binghamton CS-140

University Spring 2021

Add a node In "order"....

public void pushOrder(int payload) {
if (root == null) root = new TreeNode(payload);

start at the root
else pushOrder(payload, root);

} payload<after.payload
private void pushOrder(int payload, TreeNode after) insert left...

if (payload < after.getPayload()) {

if (after.getLeft() == null) after.setLeft(new TreeNode(payload)):=grulaata shitin el EE
else pushOrder(payload, after.getlLeft()); if not, add to the left sub-tree
}else {

if (after.getRight() == null) after.setRight(new TreeNode(payload));
else pushOrder(payload, after.getRight());

payload>=after.payload

insert right...

Binghamton CS-140

University Spring 2021

Tree size...

public int size() {
' tart at th t
return size(root);

private int size(TreeNode from) { .

if from==null) return O;
return 1 +size(from.left) +size(from.right);

number of nodes in left sub-tree | number of nodes in right sub-tree

10

Binghamton CS-140

University Spring 2021

Tree depth...

public int depth() { Depth: The maximum distance
return depth(root); from the root to any leaf

§

private int depth(TreeNode from) {
if from==null) return O;
int dl=depth(from.left);
int dr=depth(from.right);

return 1,+(dI>dr?dl:dr);
ﬁ maximum of either left or right sub-tree depth

11

Binghamton CS-140

University Spring 2021

Directed Graph

By Booyabazooka - Own work,

Public Domain,

reference to another node https://commons.wikimedia.org/w/index.php?curid=5275390

node

references 2 nodes references 1 node

referenced by 1 nodes referenced by 2 nodes

12

Binghamton CS-140

University Spring 2021

Data Structures

e Much more to cover, but that's an intro
* CS-240 Data Structures and Algorithms

* Java self-references enable easy implementation
* Great examples of method recursion!

13

