
Binghamton

University

CS-140

Spring 2021

1



Binghamton

University

CS-140

Spring 2021

What is a Data Structure

• A method of organizing data to enable problem solving

• a collection of data values, the relationships among them, and the 
functions or operations that can be applied to the data.

• Arguably, the key organizing factor in software design

Wegner, Peter; Reilly, Edwin D. (2003-08-29). Encyclopedia of Computer Science. 

Chichester, UK: John Wiley and Sons. pp. 507–512. ISBN 978-0470864128.

http://dl.acm.org/citation.cfm?id=1074100.1074312
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0470864128


Binghamton

University

CS-140

Spring 2021

Object / Class as a Data Structure

• Creates a "relationship" between the fields in a single object
• All fields describe the same object

• Define the ways of accessing and manipulating that data through 
methods

3



Binghamton

University

CS-140

Spring 2021

Singly Linked List

• Fast insertion if you know where to insert

• Easy to grow and shrink

• Low "overhead" (but more than arrays)

• Always starts at "head"

• Easy to move forward, hard to move backward!

4



Binghamton

University

CS-140

Spring 2021

Doubly Linked List

• Each node contains a "prev" reference to it's predecessor 
• as well as a "next" pointer to what comes after

• Usually track both head and tail, so we can start from either end

• Almost the same as a singly linked list, but more overhead and
book-keeping traded off for better performance in some
applications.

• See the details in the example code

5



Binghamton

University

CS-140

Spring 2021

Tree Binary Tree

root

branches

leaves



Binghamton

University

CS-140

Spring 2021

Computer Science Binary Tree
root

branches

leaves



Binghamton

University

CS-140

Spring 2021

A tree node class….

private class TreeNode {

private int payload;

private TreeNode left;

private TreeNode right;

// Standard constructor, getters and setters

// and toString

8



Binghamton

University

CS-140

Spring 2021

Add a node in "order"….

public void pushOrder(int payload) {

if (root == null) root = new TreeNode(payload);

else pushOrder(payload, root);

}

private void pushOrder(int payload, TreeNode after) {

if (payload < after.getPayload()) {

if (after.getLeft() == null) after.setLeft(new TreeNode(payload));

else pushOrder(payload, after.getLeft());

} else {

if (after.getRight() == null) after.setRight(new TreeNode(payload));

else pushOrder(payload, after.getRight());

}

}

9

start at the root

payload<after.payload
insert left…

payload>=after.payload
insert right…

if there is room, add here

if not, add to the left sub-tree



Binghamton

University

CS-140

Spring 2021

no nodes in a null reference

Tree size…

public int size() {

return size(root);

}

private int size(TreeNode from) {

if (from==null) return 0;

return 1+size(from.left) +size(from.right);

}

10

start at the root

this node number of nodes in left sub-tree number of nodes in right sub-tree



Binghamton

University

CS-140

Spring 2021

Tree depth…

public int depth() {
return depth(root);

}

private int depth(TreeNode from) {
if (from==null) return 0;
int dl=depth(from.left);
int dr=depth(from.right);
return 1+(dl>dr?dl:dr);

}

11

this node maximum of either left or right sub-tree depth

Depth: The maximum distance 
from the root to any leaf



Binghamton

University

CS-140

Spring 2021

Directed Graph

12

payload

reference to another node

node

references 2 nodes references 1 node

referenced by 1 nodes referenced by 2 nodes

By Booyabazooka - Own work, 
Public Domain, 

https://commons.wikimedia.org/w/index.php?curid=5275390



Binghamton

University

CS-140

Spring 2021

Data Structures

• Much more to cover, but that's an intro
• CS-240 Data Structures and Algorithms

• Java self-references enable easy implementation

• Great examples of method recursion!

13


