S v |
T N
ks
0]

O &
on.
o
9 0]

inghamton
niversi

B
U

Binghamton CS-140

University Spring 2021

Method vs. Data Recursion

Method Recursion Data Recursion

* A method invokes itself * An object references another
object in the same class

* Reference may be null
* no recursion required

* Simple case

* no recusion required

. Avoid infinite recursion * Avoid circular references

Binghamton CS-140

University Spring 2021

Start simple... singly linked list

* A list has multiple items... each item is a “node”

* Each node carries some data - a payload

* To keep things simple, our payload will just be a single integer. A more
sophisticated application would have a larger and more complex payload

* Each node (except tail) references its "next" node

1sbnsi bnis o020l 0Ye% 1AW bns slobnoa au Me¥ 150 xo8 92TA eS8hHt 182 nsT FEYCHE 9200dsD SO MM ritiw 32i2noo Iripist odlil 2189y 1918l 91slqnit spusp 'O” 1anisH

Binghamton CS-140

University Spring 2021

Singly Linked Node Class

Reference to another instance
class SlIINode { in the same class

private int payload;
private SIINode next;

public SIINode(int payload) {
this.payload=payload;
this.next=null;

}

public int getPayload() { return payload; }
public SIINode getNext() { return next; }
public void setNext(SIINode next) { this.next = next; }

Binghamton CS-140

University Spring 2021

Helper Class

* SlINode is a "helper" class for a singly linked list
* Only used within singly linked lists

* No need to expose SlINode to the world

* We can define SlINode as a "helper"” class
* private insidea SingleLinkedList class

Binghamton CS-140

University Spring 2021

Singly Linked List Class

"Default" constructor initializes head to null
which is an empty list

public class SingleLinkedList {
private SlINode head;

private class SlINode { Helper class
private int payload;

Unavailable outside the SingleLinkedList class

Binghamton CS-140

University Spring 2021

SinglyLinkedList pushHead method

public void pushHead(int payload) {
SIINode newNode = new SlINode(payload);

newNode. setNext(head); ———{ AR

head=newNode;

Binghamton CS-140

University Spring 2021

ListTester main method

public static void main(String[] args) {
SingleLinkedList Ist = new SingleLinkedList();

st.pushHead(14);

st.pushHead(23);

st.pushHead(9):

Binghamton CS-140

University Spring 2021

ListTester main method

public static void main(String[] args) {
SingleLinkedList Ist = new SingleLinkedList();

st.pushHead(14);

st.pushHead(23);

st.pushHead(9):

5
C N
SingleLinkedList
head null

(& /

Binghamton CS-140

University Spring 2021

ListTester main method

public static void main(String[] args) {
SingleLinkedList Ist = new SingleLinkedList();

st.pushHead(14);

st.pushHead(23);

st.pushHead(9):

} < N
Ve I SlINode
SingleLinkedList payload | 14
head next null

(& /\ ~ .

Binghamton CS-140

University Spring 2021

ListTester main method

public static void main(String[] args) {
SingleLinkedList Ist = new SingleLinkedList();

st.pushHead(14);

st.pushHead(23);

st.pushHead(9):

) a))
s D SlINode SlINode
SingleLinkedList payload | 23 payload | 14
head next / next null

- AN > ~ 1

Binghamton CS-140

University Spring 2021

ListTester main method

public static void main(String[] args) {
SingleLinkedList Ist = new SingleLinkedList();

st.pushHead(14);

st.pushHead(23);

st.pushHead(9);

} - >
an | - SlINode : SlINode N (SlINode A
SingleLinkedList payload ‘9/' payload | 23 payload | 14
" nead ') | next next next null

> RN >

CS-140
Spring 2021

Binghamton

University

How do we push to the tail?

 We track head, and we can find the tail if we know the head
e The tail is the node with a "null” next reference.
* We could write a simple loop:

SIINode tail;

for(tail=head;
(tail '= null) && (tail.getNext()!=null);
tail=tail.getNext()){ }

* But we just learned about recursion... let's try it...

13

Binghamton CS-140

University Spring 2021

Single Linked List getTaill method

private SlINode getTail(SIINode from) {

if (from==null) return Null; ———————— O

SIINode next=from.getNext();

if (next==null) return from;— ——_FI e

return g etTail (n EXt) : Invoke recursively on a simpler problem

} -- a shorter list

public SlINode getTail() {

return getTail(head); (TN

14

Binghamton CS-140

University Spring 2021

Single Linked List pushTail method

public void pushTail(int payload) {
if (head==null) head=new SlINode(payload);
else getTail().setNext(new SlINode(payload));

}

15

Binghamton CS-140

University Spring 2021

SLL recursive pushOrder method

if payload>tail, make payload tail

private void pushOrder(int payload,SlIINode after) {

SIINode afterNext=after.getNext();

if (afterNext==null) after.setNext(new SlINode(payload));

else if (payload >= afterNext.getPayload()) pushOrder(payload,afterNext);

else {
SlIINode newNode = new SlINode(payload);
after.setNext(newNode);
newNode.setNext(afterNext); payload

if payload>next, recursive call

} " SliNode " SliNode
} W payload payload | 10
next next
A | -

Binghamton CS-140

University Spring 2021

SLL recursive pushOrder method

private void pushOrder(int payload,SlIINode after) {

SIINode afterNext=after.getNext();

if (afterNext==null) after.setNext(new SlINode(payload));

else if (payload >= afterNext.getPayload()) pushOrder(payload,afterNext);

else {
SIINode newNode = new SlINode(payload);
after.setNext(newNode);
newNode.setNext(afterNext);

| } " SlINode ~ SlINode
ayload ayload | 10
ey SlINode Y
next next
A payload | 7 -
newNode next nul/

Binghamton CS-140

University Spring 2021

SLL recursive pushOrder method

private void pushOrder(int payload,SlIINode after) {
SIINode afterNext=after.getNext();
if (afterNext==null) after.setNext(new SlINode(payload));
else if (payload >= afterNext.getPayload()) pushOrder(payload,afterNext);
else {
SlIINode newNode = new SlINode(payload);
after.setNext(newNode);
newNode.setNext(afterNext);
! ~ SliNode) M\/ SliNode
! payload 3 payload | 10

after gumnd " SliNode)

next next
A ! payload | 7 -
newNode 9 next nul/

Binghamton CS-140

University Spring 2021

SLL recursive pushOrder method

private void pushOrder(int payload,SlIINode after) {

SIINode afterNext=after.getNext();

if (afterNext==null) after.setNext(new SlINode(payload));

else if (payload >= afterNext.getPayload()) pushOrder(payload,afterNext);

else {
SlIINode newNode = new SlINode(payload);
after.setNext(newNode);
newNode.setNext(afterNext);

} " SllNode SliNode

ayload 3 ayload | 10
Pp— " SliNode) Y

next next
A ! payload | 7 -
newNode N next ,

-

Binghamton CS-140

University Spring 2021

SLL recursive pushOrder method

private void pushOrder(int payload,SlIINode after) {
SIINode afterNext=after.getNext();
if (afterNext==null) after.setNext(new SlINode(payload));
else if (payload >= afterNext.getPayload()) pushOrder(payload,afterNext);
else {
SlIINode newNode = new SlINode(payload);
after.setNext(newNode);
newNode.setNext(afterNext);

! ~ SliNode " SliNode ~ " SliNode
} o—> payload 3 payload 7 payload | 10
next next next
\ | \ -

