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Method vs. Data Recursion

Method Recursion Data Recursion

* A method invokes itself * An object references another
object in the same class

* Reference may be null
* no recursion required

* Simple case

* no recusion required

. Avoid infinite recursion * Avoid circular references
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Start simple... singly linked list

* A list has multiple items... each item is a “node”

* Each node carries some data - a payload

* To keep things simple, our payload will just be a single integer. A more
sophisticated application would have a larger and more complex payload

* Each node (except tail) references its "next" node
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Singly Linked Node Class

Reference to another instance
class SlIINode { in the same class

private int payload;
private SIINode next;

public SIINode(int payload) {
this.payload=payload;
this.next=null;

}

public int getPayload() { return payload; }
public SIINode getNext() { return next; }
public void setNext(SIINode next) { this.next = next; }
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Helper Class

* SlINode is a "helper" class for a singly linked list
* Only used within singly linked lists

* No need to expose SlINode to the world

* We can define SlINode as a "helper"” class
* private insidea SingleLinkedList class
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Singly Linked List Class

"Default" constructor initializes head to null
which is an empty list

public class SingleLinkedList {
private SlINode head;

private class SlINode { Helper class
private int payload;

Unavailable outside the SingleLinkedList class
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SinglyLinkedList pushHead method

public void pushHead(int payload) {
SIINode newNode = new SlINode(payload);

newNode. setNext(head); ———{ AR

head=newNode;
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ListTester main method

public static void main(String[] args) {
SingleLinkedList Ist = new SingleLinkedList();

st.pushHead(14);

st.pushHead(23);

st.pushHead(9):
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ListTester main method

public static void main(String[] args) {
SingleLinkedList Ist = new SingleLinkedList();

st.pushHead(14);

st.pushHead(23);

st.pushHead(9):
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ListTester main method

public static void main(String[] args) {
SingleLinkedList Ist = new SingleLinkedList();

st.pushHead(14);

st.pushHead(23);

st.pushHead(9):
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ListTester main method

public static void main(String[] args) {
SingleLinkedList Ist = new SingleLinkedList();

st.pushHead(14);

st.pushHead(23);

st.pushHead(9):
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ListTester main method

public static void main(String[] args) {
SingleLinkedList Ist = new SingleLinkedList();

st.pushHead(14);

st.pushHead(23);

st.pushHead(9);

} - >
an | - SlINode : SlINode N ( SlINode A
SingleLinkedList payload ‘9/' payload | 23 payload | 14
" nead ') | next next next null
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How do we push to the tail?

 We track head, and we can find the tail if we know the head
e The tail is the node with a "null” next reference.
* We could write a simple loop:

SIINode tail;

for(tail=head;
(tail '= null) && (tail.getNext()!=null);
tail=tail.getNext()){ }

* But we just learned about recursion... let's try it...
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Single Linked List getTaill method

private SlINode getTail(SIINode from) {

if (from==null) return Null; ———————— O

SIINode next=from.getNext();

if (next==null) return from;— ——_FI e

return g etTail (n EXt) : Invoke recursively on a simpler problem

} -- a shorter list

public SlINode getTail() {

return getTail(head); (TN

14
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Single Linked List pushTail method

public void pushTail(int payload) {
if (head==null) head=new SlINode(payload);
else getTail().setNext(new SlINode(payload));

}

15
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SLL recursive pushOrder method

if payload>tail, make payload tail

private void pushOrder(int payload,SlIINode after) {

SIINode afterNext=after.getNext();

if (afterNext==null) after.setNext(new SlINode(payload));

else if (payload >= afterNext.getPayload()) pushOrder(payload,afterNext);

else {
SlIINode newNode = new SlINode(payload);
after.setNext(newNode);
newNode.setNext(afterNext); payload

if payload>next, recursive call

} " SliNode " SliNode
} W payload payload | 10
next next
A | -
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SLL recursive pushOrder method

private void pushOrder(int payload,SlIINode after) {

SIINode afterNext=after.getNext();

if (afterNext==null) after.setNext(new SlINode(payload));

else if (payload >= afterNext.getPayload()) pushOrder(payload,afterNext);

else {
SIINode newNode = new SlINode(payload);
after.setNext(newNode);
newNode.setNext(afterNext);

| } " SlINode ~ SlINode
ayload ayload | 10
ey SlINode Y
next next
A payload | 7 -
newNode next nul/




Binghamton CS-140

University Spring 2021

SLL recursive pushOrder method

private void pushOrder(int payload,SlIINode after) {
SIINode afterNext=after.getNext();
if (afterNext==null) after.setNext(new SlINode(payload));
else if (payload >= afterNext.getPayload()) pushOrder(payload,afterNext);
else {
SlIINode newNode = new SlINode(payload);
after.setNext(newNode);
newNode.setNext(afterNext);
! ~ SliNode ) M\/ SliNode
! payload 3 payload | 10
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SLL recursive pushOrder method

private void pushOrder(int payload,SlIINode after) {

SIINode afterNext=after.getNext();

if (afterNext==null) after.setNext(new SlINode(payload));

else if (payload >= afterNext.getPayload()) pushOrder(payload,afterNext);

else {
SlIINode newNode = new SlINode(payload);
after.setNext(newNode);
newNode.setNext(afterNext);

} " SllNode SliNode

ayload 3 ayload | 10
Pp— " SliNode ) Y

next next
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SLL recursive pushOrder method

private void pushOrder(int payload,SlIINode after) {
SIINode afterNext=after.getNext();
if (afterNext==null) after.setNext(new SlINode(payload));
else if (payload >= afterNext.getPayload()) pushOrder(payload,afterNext);
else {
SlIINode newNode = new SlINode(payload);
after.setNext(newNode);
newNode.setNext(afterNext);

! ~ SliNode " SliNode ~ " SliNode
} o—> payload 3 payload 7 payload | 10
next next next
\ | \ -




