
Binghamton

University

CS-140

Spring 2021

Data 
Recursion

1



Binghamton

University

CS-140

Spring 2021

Method vs. Data Recursion

Method Recursion

• A method invokes itself

• Simple case
• no recusion required

• Avoid infinite recursion

Data Recursion

• An object references another 
object in the same class

• Reference may be null
• no recursion required

• Avoid circular references

2



Binghamton

University

CS-140

Spring 2021

Start simple… singly linked list
• A list has multiple items… each item is a “node”

• Each node carries some data – a payload
• To keep things simple, our payload will just be a single integer. A more 

sophisticated application would have a larger and more complex payload

• Each node (except tail) references its "next" node

Head Tail

next

payload



Binghamton

University

CS-140

Spring 2021

Singly Linked Node Class

class SllNode {
private int payload;
private SllNode next;

public SllNode(int payload) {
this.payload=payload;
this.next=null;

} 

public int getPayload() { return payload; }
public SllNode getNext() { return next; }
public void setNext(SllNode next) { this.next = next; }

}

4

Reference to another instance
in the same class

next

payload

Node



Binghamton

University

CS-140

Spring 2021

Helper Class

• SllNode is a "helper" class for a singly linked list
• Only used within singly linked lists

• No need to expose SllNode to the world

• We can define SllNode as a "helper" class
• private inside a SingleLinkedList class

5



Binghamton

University

CS-140

Spring 2021

Singly Linked List Class

public class SingleLinkedList {

private SllNode head;

…

private class SllNode {

private int payload;

…

}

}

6

"Default" constructor initializes head to null
which is an empty list

Helper class
Unavailable outside the SingleLinkedList class



Binghamton

University

CS-140

Spring 2021

SinglyLinkedList pushHead method

public void pushHead(int payload) {

SllNode newNode = new SllNode(payload);

newNode.setNext(head);

head=newNode;

}

7

If head was null, newNode becomes tail



Binghamton

University

CS-140

Spring 2021

ListTester main method

public static void main(String[] args) {

SingleLinkedList lst = new SingleLinkedList();

lst.pushHead(14);

lst.pushHead(23);

lst.pushHead(9);

}

8



Binghamton

University

CS-140

Spring 2021

ListTester main method

public static void main(String[] args) {

SingleLinkedList lst = new SingleLinkedList();

lst.pushHead(14);

lst.pushHead(23);

lst.pushHead(9);

}

9

SingleLinkedList

head null



Binghamton

University

CS-140

Spring 2021

ListTester main method

public static void main(String[] args) {

SingleLinkedList lst = new SingleLinkedList();

lst.pushHead(14);

lst.pushHead(23);

lst.pushHead(9);

}

10

SingleLinkedList

head

SllNode

payload 14

next null



Binghamton

University

CS-140

Spring 2021

ListTester main method

public static void main(String[] args) {

SingleLinkedList lst = new SingleLinkedList();

lst.pushHead(14);

lst.pushHead(23);

lst.pushHead(9);

}

11

SingleLinkedList

head

SllNode

payload 23

next

SllNode

payload 14

next null



Binghamton

University

CS-140

Spring 2021

ListTester main method

public static void main(String[] args) {

SingleLinkedList lst = new SingleLinkedList();

lst.pushHead(14);

lst.pushHead(23);

lst.pushHead(9);

}

12

SingleLinkedList

head

SllNode

payload 9

next

a

SllNode

payload 23

next

a

SllNode

payload 14

next null



Binghamton

University

CS-140

Spring 2021

How do we push to the tail?

• We track head, and we can find the tail if we know the head

• The tail is the node with a "null" next reference.

• We could write a simple loop:

SllNode tail;

for(tail=head; 

(tail != null) && (tail.getNext()!=null); 

tail=tail.getNext()){ }

• But we just learned about recursion… let's try it…

13



Binghamton

University

CS-140

Spring 2021

Single Linked List getTail method

private SllNode getTail(SllNode from) {

if (from==null) return null;

SllNode next=from.getNext();

if (next==null) return from;

return getTail(next);

}

public SllNode getTail() {

return getTail(head);

}

14

Special case for empty list

Simplest case… from IS the tail

Invoke recursively on a simpler problem
-- a shorter list

If no node specified, start from head.



Binghamton

University

CS-140

Spring 2021

Single Linked List pushTail method

public void pushTail(int payload) {

if (head==null) head=new SllNode(payload);

else getTail().setNext(new SllNode(payload));

}

15



Binghamton

University

CS-140

Spring 2021

SLL recursive pushOrder method

private void pushOrder(int payload,SllNode after) {

SllNode afterNext=after.getNext();

if (afterNext==null) after.setNext(new SllNode(payload));

else if (payload >= afterNext.getPayload()) pushOrder(payload,afterNext);

else {

SllNode newNode = new SllNode(payload);

after.setNext(newNode);

newNode.setNext(afterNext);

}

}

if payload>tail, make payload tail

if payload>next, recursive call

SllNode

payload 3

next
after

SllNode

payload 10

next

afterNext
7

payload



Binghamton

University

CS-140

Spring 2021

SLL recursive pushOrder method

private void pushOrder(int payload,SllNode after) {

SllNode afterNext=after.getNext();

if (afterNext==null) after.setNext(new SllNode(payload));

else if (payload >= afterNext.getPayload()) pushOrder(payload,afterNext);

else {

SllNode newNode = new SllNode(payload);

after.setNext(newNode);

newNode.setNext(afterNext);

}

}
SllNode

payload 3

next
after

SllNode

payload 10

next

afterNext

SllNode

payload 7

next nulnewNode



Binghamton

University

CS-140

Spring 2021

SLL recursive pushOrder method

private void pushOrder(int payload,SllNode after) {

SllNode afterNext=after.getNext();

if (afterNext==null) after.setNext(new SllNode(payload));

else if (payload >= afterNext.getPayload()) pushOrder(payload,afterNext);

else {

SllNode newNode = new SllNode(payload);

after.setNext(newNode);

newNode.setNext(afterNext);

}

}
SllNode

payload 3

next
after

SllNode

payload 10

next

afterNext

SllNode

payload 7

next nulnewNode



Binghamton

University

CS-140

Spring 2021

SLL recursive pushOrder method

private void pushOrder(int payload,SllNode after) {

SllNode afterNext=after.getNext();

if (afterNext==null) after.setNext(new SllNode(payload));

else if (payload >= afterNext.getPayload()) pushOrder(payload,afterNext);

else {

SllNode newNode = new SllNode(payload);

after.setNext(newNode);

newNode.setNext(afterNext);

}

}
SllNode

payload 3

next
after

SllNode

payload 10

next

afterNext

SllNode

payload 7

nextnewNode



Binghamton

University

CS-140

Spring 2021

SLL recursive pushOrder method

private void pushOrder(int payload,SllNode after) {

SllNode afterNext=after.getNext();

if (afterNext==null) after.setNext(new SllNode(payload));

else if (payload >= afterNext.getPayload()) pushOrder(payload,afterNext);

else {

SllNode newNode = new SllNode(payload);

after.setNext(newNode);

newNode.setNext(afterNext);

}

}
SllNode

payload 3

next

SllNode

payload 10

next

SllNode

payload 7

next


