
Binghamton

University

CS-140

Spring 2021

Recursion
1

Binghamton

University

CS-140

Spring 2021

Divide and Conquer

A divide-and-conquer algorithm:

• breaks down a problem into two one or more sub-problems of the
same or related type,

• until these become simple enough to be solved directly.

• The solutions to the sub-problems are then combined to give a
solution to the original problem.

Wikipedia Divide-and-conquer algorithm

2

https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm

Binghamton

University

CS-140

Spring 2021

Fibonacci Numbers

• Definition: fib(0)=0, fib(1)=1, fib(n) = fib(n-1) + fib(n-2)

• Result: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …

• Standard mathematical example for divide and conquer

public static int fib(int n) {

if (n<2) return n;

return fib(n-1) + fib(n-2);

}

3

Binghamton

University

CS-140

Spring 2021

breaks down a problem into one or more sub-problems
of the same or related type

breaks down a problem into one or more sub-problems
of the same or related type

Fibonacci Numbers

public static int fib(int n) {

if (n<2) return n;

return fib(n-1) + fib(n-2);

}

4

Binghamton

University

CS-140

Spring 2021

until these become simple enough to be solved directly

public static int fib(int n) {

if (n<2) return n;

return fib(n-1) + fib(n-2);

}

Fibonacci Numbers

5

Binghamton

University

CS-140

Spring 2021

The solutions to the sub-problems are then combined
to give a solution to the original problem.

Fibonacci Numbers

public static int fib(int n) {

if (n<2) return n;

return fib(n-1) + fib(n-2);

}

6

Binghamton

University

CS-140

Spring 2021

Code before the recursive call(s)

Recursion

• A recursive method is a method that invokes itself

• Divide recursive methods into three parts:

public static int fib(int n) {

if (n<2) return n;

return fib(n-1) + fib(n-2);

}

7
Recursive call(s) Code after the recursive call(s)Code after the recursive call(s)Recursive call(s)

Binghamton

University

CS-140

Spring 2021

Code before the recursive call(s)

Avoid Infinite Recursion

• Handle the simple case before the recursive call!

public static int fib(int n) {

if (n<2) return n;

return fib(n-1) + fib(n-2);

}

8

Binghamton

University

CS-140

Spring 2021

Recursive Call Stack

9

Lev 0 Lev 1 Lev 2 Lev 3 Lev 4 Call Stack

fib(4) { if (4<2)… fib(4) 1

fib(3) { if (3<2)… fib(3) 1 fib(4) 2

fib(2) { if (2<2)… fib(2) 1 fib(3) 2 fib(4) 2

fib(1) { if (1<2) return 1 } fib(1) 1 fib(2) 2 fib(3) 2 fib(4) 2

fib(0) { if (0<2) return 0 } fib(0) 1 fib(2) 2 fib(3) 2 fib(4) 2

return 1+0} fib(2) 2 fib(3) 2 fib(4) 2

fib(1) { if (1<2) return 1 } fib(1) 1 fib(3) 2 fib(4) 2

return 1+1 } fib(3) 2 fib(4) 2

fib(2) { if (2<2)… fib(2) 1 fib(4) 2

fib(1) { if (1<2) return 1 } fib(1) 1 fib(2) 2 fib(4) 2

fib(0) { if (0<2) return 0 } fib(0) 1 fib(2) 2 fib(4) 2

return 1+0 fib(2) 2 fib(4) 2

return 2+1 } fib(4) 2

3

Binghamton

University

CS-140

Spring 2021

Recurse

Simplify

Unfolding Recursion

fib(4) { if (4<2)…

fib(3) { if (3<2)…

fib(2) { if (2<2)…

fib(1) { if (1<2) return 1 }

fib(0) { if (0<2) return 0;

return 1+0}

fib(1) { if (1<2) return 1 }

return 1+1 }

fib(2) { if (2<2)…

fib(1) { if (1<2) return 1 }

fib(0) { if (0<2) return 0 }

return 1+0 }

return 2+1 }

3

10

Simplify

Solve simple case

Combine results

SimplifySimplify

Solve simple caseSolve simple caseSolve simple case

Combine resultsCombine results

RecurseRecurseRecurseRecurseRecurseRecurseRecurse

Solve simple case

Combine results

Binghamton

University

CS-140

Spring 2021

Efficiency vs. Elegance

• Recursive solutions are often elegant, but expensive
• Lots of method invocation (expensive)

• Big call stack required

• May need to re-calculate values
• fib(2) called twice in fib(4)

• fib(1) called three times in fib(4)

• Compiler often optimizes recursion
• Replace recursive calls with a loop

• Allows elegance of recursion without performance penalty!

11

Binghamton

University

CS-140

Spring 2021

Think Recursion!
• Can I divide the problem into simpler problems?

• Can the simplest form of the problem be solved easily?

• If so… recursion can simplify solving the problem!

12

