.) ...“..-¢ﬂ i
u.,c...:‘
I 417 o, e. - r&'

fm..

CS-140
Spring 2021

=
Q
:
L
Y-
>
=

ing

B
U

Binghamton CS-140

University Spring 2021

Divide and Conquer

A divide-and-conquer algorithm:

* breaks down a problem into twe one or more sub-problems of the
same or related type,

* until these become simple enough to be solved directly.

* The solutions to the sub-problems are then combined to give a
solution to the original problem.

Wikipedia Divide-and-conquer algorithm

https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm

Binghamton CS-140

University

Spring 2021

Fibonacci Numbers

* Definition: fib(0)=0, fib(1)=1, fib(n) = fib(n-1) + fib(n-2)
*Result: 0,1,1, 2, 3,5, 8,13, 21, 34, 55, 89, 144, ...
» Standard mathematical example for divide and conquer

public static 1int fib(int n) {
1t (n<2) return n;
return fib(n-1) + fib(n-2);

¥

Binghamton CS-140

University Spring 2021

Fibonacci Numbers

breaks down a problem into one or more sub-problems
of the same or related type

public static
1f (n<2) retu®n n;
return [fib(n-1) |+ fib(n-2)}

¥

Binghamton CS-140

University Spring 2021

Fibonacci Numbers

until these become simple enough to be solved directly

public stafic int fib(int n) {
[1f (n<2) return n;}
return fib(n-1) + fib(nh-2);
}

Binghamton CS-140

University Spring 2021

Fibonacci Numbers

The solutions to the sub-problems are then combined
to give a solution to the original problem.

public static fib(int n) {
1t (n<2) returfdin;
return [fib(n-1) '+ fib(n-2));

¥

Binghamton CS-140

University Spring 2021

Recursion

* A recursive methodis a method that invokes itself
* Divide recursive methods into three parts:

Code before the recursive call(s)

1f rn n;
return f1b(n— + f1b(n Zﬂ

Recursive call(s) Code after the recursive call(s)

Binghamton CS-140

University Spring 2021

Avold Infinite Recursion

* Handle the simple case beforethe recursive call!

Code before the recursive call(s)

public static int fib(in
[1f (n<2) return n;
return Tib(n-1) + fib(n-2);

¥

Binghamton CS-140

University Spring 2021

Recursive Call Stack
Lev0 Lev1l Lev2 Lev3 Lev 4

fib(4) { | if (4<2)... fib(4) 1
fib(3) { | if (3<2)... fib(3) 1 fib(4) 2
fib(2) { | if (2<2)... fib(2) 1 fib(3)2 fib(4)2
fib(1) { | if (1<2) return 1} fib(1) 1 fib(2)2 fib(3)2 fib(4) 2
fib(0) { | if (0<2) return 0 } fib(0) 1 fib(2)2 fib(3)2 fib(4) 2
return 140} fib(2)2 fib(3)2 fib(4)2
fib(1) { | if (1<2) return 1} fib(1) 1 fib(3)2 fib(4) 2
return 1+1 } fib(3)2 fib(4) 2
fib(2) { | if (2<2)... fib(2) 1 fib(4) 2
fib(1) { | if (1<2) return 1 } fib(1) 1 fib(2)2 fib(4) 2
fib(0) { | if (0<2) return 0 } fib(0)1 fib(2)2 fib(4) 2
return 1+0 fib(2)2 fib(4) 2
return 2+1 } fib(4) 2
3

Binghamton CS-140

University Spring 2021

Unfolding Recursion

Simplify

fib(4){ [(if (4<2).)
fib3y{ [if 3<2).]
[fib(2)](

if (2<2)..
fib(1){ [if (1<2) returnd
fib(0){ [if (0<2) rguffn O
| return 1+0}
fib(1)){ [if (1<2) resdn™s
‘return 141)}

if (2<2). /
W(l)]{ [if (1<2) return 1 ‘

fib(0)){ [if (0<2) return 0]} \
‘return 140}

‘return 2+1]}

Solve simple case

Combine results

10

Binghamton CS-140

University Spring 2021

Efficiency vs. Elegance

* Recursive solutions are often elegant, but expensive
* Lots of method invocation (expensive)
* Big call stack required
* May need to re-calculate values
* fib(2) called twice in fib(4)
 fib(1) called three times in fib(4)
* Compiler often optimizes recursion
* Replace recursive calls with a loop
» Allows elegance of recursion without performance penalty!

11

Binghamton CS-140

University Spring 2021

Think Recursion!

* Can I divide the problem into simpler problems?
* Can the simplest form of the problem be solved easily?
* If so... recursion can simplify solving the problem!

12

