Binghamton CS-140

University Fall 2020

D Chapter 4]

Number Representation

Under the covers of numbers in Java

Binghamton CS-140

University Fall 2020

How (Unsigned) Integers Work

Base 10 - Decimal (People) Base 2 - Binary (Computer)
2 3 4 1 1.1 0 1 0 1 O
234 =2 x 104 +3 x101 +4 x10° 1 X 274+1 x2°4+1 x2°+

234 =0 x 2% 4+1 x234+40 x2%2+
1 x21+0 x2°

Binghamton CS-140

University Fall 2020

Signed (Two’'s Complement) Numbers

o If left-most bit is 1, interpret bits as unsigned, but subtract 2"

1 1 1 0 1 0 1 0

1 X 2741 %2041 %x2°40 X 2%4+1 x2340 x224+41 x214+0 x29=234

234 — 2% =234 — 256 = —22

* Nis the Number of bits (8 in the example)
* Allows us to specify any integer, x: -2VD) <= x <= (2(N-D-1)

Binghamton CS-140

University Fall 2020

Integer Division and Truncation

* Integer division (byte, short, int, long) discards remainders:
* 23 /4is 5,but4*5is 20! (23 % 4 is 3).

System.out.println(4000000000L / 1234567); // 3240
System.out.println(3240 * 1234567L); // 399997080
System.out.printin(4000000000L % 1234567); // 2920
System.out.println(4000000000L / 1234567.0); // 3240.0023652017267

Binghamton CS-140

University Fall 2020

IEEE Floating Point Standard (32 bit)

e First normalize the number to the form:

value = —1° X SIG X 28*P
* S =0 (positive) or 1 (negative)
1 < SIG < 2 (expressed in 24 bit precision)
e —127 < exp < 127

-1038 -1 0 +1 +1038
2128 _2-127 42-127 42128

Binghamton CS-140

University Fall 2020

IEEE 754 — 32 bit float

 Value Representation:
* Decimal: [+/-]<digit>.<fraction> x 10<exponent> e g 6,022 x 1023
e Binary: [+/-]1.<fraction> x 2<exponent>e 5 1.11111110000101...x 278
 Special case for 0, +/- co (INFINITY), “Not a Number” (NAN)

* Bit Representation (float)

s EXP_____ _ ___ |FRAC __ ____ _ ______

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16 b15 b14 b13 b12 b11 blO b9 b8 b7 b6 b5 b4 b3 b2 bl bO

Binghamton CS-140

University Fall 2020

Floating Point Approximation

* 4.35 has an infinite binary expansion that is truncated

01000000100010110011001100110011 (float)
0100000000010001011001100110011001100110011001100110011001100110 (double)

* 4,3499999999999993 through 4.35 all give the same double

* Weird effects of approximation:
4.35F*100 prints as 435.0
4.35*100 prints as 434.99999999999994
4.05F*100 prints as 405.00003

Binghamton CS-140

University Fall 2020

Truncation and Rounding

System.out.printin(4.35*100);

* 434.99999999999994
System.out.println((int)4.35*100);

* 400

System.out.println((int)(4.35*100));

* 434
System.out.printin(Math.round(4.35*100));
* 435 (Note... this is of type “long”)

Binghamton CS-140

University Fall 2020

Range v. Precision v. Space

boolean _— 8 bits
byte +/-127 [Bxact " |8bits
short + /- ~32K _ 16 bits
int +/-~2M [EXAce N 32 bits
long +/-~10'8 [Exact 64 bits

float ~15 digits 32 bits

double ~23 digits -

Binghamton CS-140

University Fall 2020

Declaring Constants

* When working with numbers in programs it is of huge benefit to
give names to constants

* By introducing named constants, code becomes more transparent
to readers and if a change is needed, the change is only made in
one place.

* Example: U Section 4.1.2
final double QUARTER_VALUE = 0.25;
Compiler does not allow QUARTER_VALUE to be modified.

* Convention - constants are all upper case

Binghamton CS-140

University Fall 2020

Constants in Library

* In Math:
public static final double E = 2.7182818284590452354;

public static final double Pl = 3.14159265358979323846;
access as: Math.E or Math.PI

* In the default sSRGB space
public final static Color yellow = new Color(255,255,0);

* In the default sRGB space since 1.4
public final static Color YELLOW = yellow;

