
Binghamton

University

CS-140

Fall 2020

Number Representation
Under the covers of numbers in Java

1

Chapter 4

Binghamton

University

CS-140

Fall 2020

How (Unsigned) Integers Work

Base 10 – Decimal (People) Base 2 – Binary (Computer)

234 =
1 × 27 + 1 × 26 + 1 × 25 +
0 × 24 + 1 × 23 + 0 × 22 +

1 × 21 + 0 × 20

234 = 2 × 102 + 3 × 101 + 4 × 100

… 102 101 100

2 3 4

27 26 25 24 23 22 21 20

1 1 1 0 1 0 1 0

Binghamton

University

CS-140

Fall 2020

Signed (Two’s Complement) Numbers

• If left-most bit is 1, interpret bits as unsigned, but subtract 2N

• N is the Number of bits (8 in the example)

• Allows us to specify any integer, x : -2(N-1) <= x <= (2(N-1) -1)

27 26 25 24 23 22 21 20

1 1 1 0 1 0 1 0

234 − 28 = 234 − 256 = −22

1 × 27 + 1 × 26 + 1 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 0 × 20 = 234

Binghamton

University

CS-140

Fall 2020

Integer Division and Truncation

• Integer division (byte, short, int, long) discards remainders:

• 23 / 4 is 5, but 4*5 is 20! (23 % 4 is 3).

System.out.println(4000000000L / 1234567); // 3240

System.out.println(3240 * 1234567L); // 399997080

System.out.println(4000000000L % 1234567); // 2920

System.out.println(4000000000L / 1234567.0); // 3240.0023652017267

4

Binghamton

University

CS-140

Fall 2020

IEEE Floating Point Standard (32 bit)

• First normalize the number to the form:

𝑣𝑎𝑙𝑢𝑒 = −1𝑆 × 𝑆𝐼𝐺 × 2𝑒𝑥𝑝

• S = 0 (positive) or 1 (negative)

• 1 ≤ 𝑆𝐼𝐺 < 2 (expressed in 24 bit precision)

• −127 ≤ exp ≤ 127

-2128 +2128-2-127 +2-127
+∞-∞

0 +1038-1038 -1 +1

Binghamton

University

CS-140

Fall 2020

IEEE 754 – 32 bit float

• Value Representation:
• Decimal: [+/-]<digit>.<fraction> x 10<exponent> e.g. 6.022 x 1023

• Binary: [+/-]1.<fraction> x 2<exponent> e.g 1.11111110000101… x 278

• Special case for 0, +/- ∞ (INFINITY), “Not a Number” (NAN)

• Bit Representation (float)

S EXP FRAC

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Binghamton

University

CS-140

Fall 2020

Floating Point Approximation

• 4.35 has an infinite binary expansion that is truncated
01000000100010110011001100110011 (float)
0100000000010001011001100110011001100110011001100110011001100110 (double)

• 4.3499999999999993 through 4.35 all give the same double

• Weird effects of approximation:
4.35F*100 prints as 435.0
4.35*100 prints as 434.99999999999994
4.05F*100 prints as 405.00003

7

Binghamton

University

CS-140

Fall 2020

Truncation and Rounding

System.out.println(4.35*100);

• 434.99999999999994

System.out.println((int)4.35*100);

• 400

System.out.println((int)(4.35*100));

• 434

System.out.println(Math.round(4.35*100));

• 435 (Note… this is of type “long”)

8

Binghamton

University

CS-140

Fall 2020

Range v. Precision v. Space

Type Range Precision Space

boolean true/false Exact 8 bits

byte +/- 127 Exact 8 bits

short +/- ~32K Exact 16 bits

int +/- ~2M Exact 32 bits

long +/- ~ 1018 Exact 64 bits

float +/- ~ 1038 ~15 digits 32 bits

double +/- ~10308 ~23 digits 64 bits

9

Binghamton

University

CS-140

Fall 2020

Declaring Constants

• When working with numbers in programs it is of huge benefit to
give names to constants

• By introducing named constants, code becomes more transparent
to readers and if a change is needed, the change is only made in
one place.

• Example:
final double QUARTER_VALUE = 0.25;

Compiler does not allow QUARTER_VALUE to be modified.

• Convention – constants are all upper case

10

Section 4.1.2

Binghamton

University

CS-140

Fall 2020

Constants in Library

• In Math:

public static final double E = 2.7182818284590452354;

public static final double PI = 3.14159265358979323846;

access as: Math.E or Math.PI

• In the default sRGB space

public final static Color yellow = new Color(255,255,0);

• In the default sRGB space since 1.4

public final static Color YELLOW = yellow;

11

