
Binghamton

University

CS-140

Fall 2020

Java Arrays

1

Chap. 7

Binghamton

University

CS-140

Fall 2020

Arrays are "built-in" Objects

2

thisDecade

int[] thisDecade; // Reference to an array

thisDecade is a reference to an
array of integers, but the array

has not been instantiated.

∅

Binghamton

University

CS-140

Fall 2020

Arrays are Objects

3

int[]

length 10

0 0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

thisDecade

int[] thisDecade; // Reference to an array
thisDecade=new int[10]; // Instantiate

Create a new array object of
length 10 with int fields

initialized to zero
Like: new Array<int>(10)

Binghamton

University

CS-140

Fall 2020

int[] thisDecade; // Reference to an array
thisDecade=new int[10]; // Instantiate
thisDecade[0]=2020; // Initialize
thisDecade[1]=2021;
…

Arrays are Objects

4

int[]

length 10

0 2020

1 2021

2 2022

3 2023

4 2024

5 2025

6 2026

7 2027

8 2028

9 2029

thisDecade

Assign values to individual fields
Like: thisDecade.add(0,2020);

Binghamton

University

CS-140

Fall 2020

Arrays as Objects

• Once an array is created, you cannot change its size!

• Fields in the object…
• length – the number of items in this array
• 0
• 1 Values of the array
• …
• length-1

• When created, all values are initialized to zero

• Values can be changed at any time
• thisDecade[3]=2013;

5

Reference to int[] may refer to "objects"
with different numbers of fields!

Binghamton

University

CS-140

Fall 2020

Shortcut: Declare, Instantiate, & Initialize

int[] thisDecade = {2020, 2021, 2022, 2023,
2024, 2025, 2026, 2027, 2028, 2029};

6

Chap. 7.1

int[]

length 10

0 2020

1 2021

2 2022

3 2023

4 2024

5 2025

6 2026

7 2027

8 2028

9 2029

thisDecade

Binghamton

University

CS-140

Fall 2020

Generic Types

• An array is an array
• array of integers
• array of Strings
• array of doubles
• array of references to objects of the BankAccount class

• Java allows us to create arrays of a specific type
• Type must be specified when declared and instantiated
• We consider the type part of the “class name” of the array
• All elements of the array must be of the type specified
• Arrays don't need them, but Generic Types will eventually be in angle

brackets <T>

7

Binghamton

University

CS-140

Fall 2020

Array Syntax

• Declaration: type[] name;
• type : any built-in type or class name (so far)

• Instantiation: name = new type[size];
• size: integer expression

• Combined: type[] name = new type[size];

• Shortcut: type[] name = { t1, t2, … };
• t1, t2, … are expressions of the correct type

• Access an element: name[index]
• index: integer expression, 0 <= index < size

• Array size: name.length

8

name.size() does NOT work

only works in declaration initialization,
{} is not a literal array!

Binghamton

University

CS-140

Fall 2020

Arrays Objects in Memory

9

int[]

length 10

0 2020

1 2021

2 2022

3 2023

4 2024

5 2025

6 2026

7 2027

8 2028

9 2029

double[]

length 5

0 3.4

1 3.7

2 4.1

3 2.9

4 3.5

thisDecade averages

Variable names are not stored in memory

double[] averages = {3.4, 3.7, 4.1, 2.9, 3.95};

Binghamton

University

CS-140

Fall 2020

Arrays of References : Class

public class BankAccount {
private double balance;
public BankAccount(double firstDeposit) {

balance = firstDeposit;
}

public double getBalance() {
return balance;

}
… code for deposit method

… code for withdraw method

}

10

Binghamton

University

CS-140

Fall 2020

Arrays of References

11

BankAccount[]

length 3

0

1

2

accounts

BankAccount

balance 20000.0

BankAccount

balance 15000.0

BankAccount

balance 40000.0
BankAccount[] accounts =

{ new BankAccount(20000),
new BankAccount(15000),
new BankAccount(40000) };

Binghamton

University

CS-140

Fall 2020

Accessing Elements of Arrays

thisDecade[0] is 2020

averages[averages.length – 1] is 3.95

investments[2].getBalance() returns 40000.0

12

Binghamton

University

CS-140

Fall 2020

Examples of Arrays of BankAccounts

BankAccount[] test1 = null; // uninstantiated array

13

null

test1

Binghamton

University

CS-140

Fall 2020

Examples of Arrays of BankAccounts

BankAccount[] test1 = null; // uninstantiated array

BankAccount[] test2 = { }; // empty array

14

BankAccount[]

length 0

test2

Binghamton

University

CS-140

Fall 2020

Examples of Arrays of BankAccounts

BankAccount[] test1 = null; // uninstantiated array

BankAccount[] test2 = { }; // empty array

BankAccount[] test3 = {null, null, null}; // empty elements

15

BankAccount[]

length 3

0 null

1 null

2 null

test3

Binghamton

University

CS-140

Fall 2020

Examples of Arrays of BankAccounts

BankAccount[] test1 = null; // uninstantiated array

BankAccount[] test2 = { }; // empty array

BankAccount[] test3 = {null, null, null}; // empty elements

BankAccount[] test4 = {new BankAccount(200),

new BankAccount(150),
new BankAccount(300) }; // fully initialized array

16

BankAccount[]

length 3

0

1

2

test4

BankAccount

balance 200 BankAccount

balance 150

BankAccount

balance 300

Binghamton

University

CS-140

Fall 2020

Examples of Arrays of BankAccounts

BankAccount[] test4 = {new BankAccount(200),new BankAccount(150), new BankAccount(300) };

BankAccount[] test5 = {null, null, new BankAccount(200), null,
new BankAccount(150), null, new BankAccount(300) };

17

BankAccount[]

length 7

0 null

1 null

2

3 null

4

5 null

6

test5

BankAccount

balance 200

BankAccount

balance 150

BankAccount

balance 300

Binghamton

University

CS-140

Fall 2020

Examples in Memory

18

BankAccount[]

length 3

0 null

1 null

2 null

test3

null

test1BankAccount[]

length 0

test2

BankAccount[]

length 3

0

1

2

test4

BankAccount

balance 200

BankAccount

balance 150

BankAccount

balance 300

BankAccount[]

length 7

0 null

1 null

2

3 null

4

5 null

6

test5

BankAccount

balance 200

BankAccount

balance 150

BankAccount

balance 300

Binghamton

University

CS-140

Fall 2020

Problem with Arrays

• Arrays are great if you know how big they need to be
• but we don’t always know how big it needs to be

• One alternative
• Start out with medium sized array

• If it needs to grow bigger, create a bigger array, copy the medium to the
bigger array – repeat as necessary

• If it grows smaller, create a smaller array, copy the medium to the smaller
array – repeat as necessary

• Another alternative: Java “ArrayList” class… more to come

19

Binghamton

University

CS-140

Fall 2020

Arrays of Arrays

• It is possible to make an array of arrays
• Not quite the same as multi-dimensional arrays, but close (superset)

• Example:

int[][] arrArr = { {1, 3, 5} , null, {7, 14, 23, 92}, {8, 3} };

System.out.println(“arrArr length is:” + arrArr.length);

prints: arrArr length is 4

20

Other languages, like C, have multi-dimensional
arrays like a matrix… these are different!

Binghamton

University

CS-140

Fall 2020

Memory for Array of Arrays

21

int[][]

length 4

0

1

2

3

int[]

length 3

0 1

1 3

2 5

arrArr int[]

length 4

0 7

1 14

2 23

3 92int[]

length 2

0 8

1 3

int[][] arrArr = { {1, 3, 5} , null, {7, 14, 23, 92}, {8, 3} };

arrArr[2][2] == 23;
arrArr[3][2] … Array Bounds exeception

Binghamton

University

CS-140

Fall 2020

"Arrays" Library Class

• Library class with many static functions to perform on arrays
• compare, copy, search, sort, fill, select, iterate, stream, toString

• The toString method makes:
"name[e0.toString(),e1.toString(),…es-1.toString()]"

invoke as: Arrays.toString(thisDecade)

returns: thisDecade[2020,2021,2022,2023,2024,2025,2026,2027,2028,2029]

22

