
Binghamton

University

CS-140

Fall 2020

Object Life Cycle

1

Creation

Initialization

Usage
Loss of 

Reference

Garbage 
Collection



Binghamton

University

CS-140

Fall 2020

Defining Constructors

• A constructor is java code that is almost the same as a method

• The name of a constructor must be the class name itself!

• Since constructors are so much like methods, we will talk about 
constructors as if they are methods (but point out differences)

2



Binghamton

University

CS-140

Fall 2020

Constructor implicit "this" reference

• Constructors are like instance methods – never "static"

• When a constructor is invoked, the JVM has already created a new object in 
the correct class, using "heap" memory

• All the fields in that new object are initialized to zero or null
• Numeric fields initialized to zero

• Character fields initialized to null (unprintable empty character)

• References are initialized to null (uninstantiated)

3

class_name

f1_name null

f2_name 0.0

… …

this



Binghamton

University

CS-140

Fall 2020

Constructor definition syntax

class classname {

modifiers classname (parameters) {

body

}

}

4

No return type!
"method name" is class name

Cannot be "static"

No "return" statement.
Implicitly returns "this"

No-parameter Constructors are optional
If null/0 field initializations are OK.



Binghamton

University

CS-140

Fall 2020

Typical Constructor

class Rectangle {
int x; int y; int width; int height;

public Rectangle(int x,int y, int width, int height) {
this.x=x; this.y=y;
this.width=width; this.height=height;

}
…

}

5



Binghamton

University

CS-140

Fall 2020

Alternative constructor using “this”

class BankAccount {

double value;

public BankAccount(double value) {

this.value = value;

System.out.println("New account balance: " + value);

}

public BankAccount() {// Instead of the null constructor…

this(0.0); // Invoke constructor w/ parameter

}

6

Special Topic 3.1

"this" refers to this class,
not this object.

"this" must come first!



Binghamton

University

CS-140

Fall 2020

Example: java.awt.Rectangle

public Rectangle(int x, int y, int width, int height) {

this.x=x; this.y=y; this.width=width; this.height=height; }

public Rectangle() { this(0,0,0,0); } // redundant null constructor

public Rectangle(Point p) { this(p.x,p.y,0,0); }

public Rectangle(int width, int height) { this(0,0,width,height); }

public Rectangle(Dimension d) { this(0,0,d.width,d.height); }

public Rectangle(Point p, Dimension d) { 
this(p.x,p.y,d.width,d.height); }

public Rectangle(Rectangle r) { this(r.x,r.y,r.width,r.height); }

7



Binghamton

University

CS-140

Fall 2020

Constructor Invocation

• Invoked as: new class(constructor_arguments);
• class – Class of the newly created object

• constructor_arguments – Any arguments required to create the object

• Constructor “method” name must match class name!

• Java creates a new object
• All fields are initialized to zero or empty or null

• Constructor initializes field values

• Constructor implicitly returns a reference to this

BankAccount checking = new BankAccount(249.37);

8

Sect. 2.4

Creation

Initialization

Usage
Loss of 

Reference

Garbage 
Collection



Binghamton

University

CS-140

Fall 2020

Using Objects

• You can use an object as long as you have a 
reference variable that references that object

• There may be several references to the same object

• References can be lost several ways
• Reference variable can be re-assigned to a different object
• Reference variables can go out of scope
• Referencing object can lose all references

• Once an object becomes unreachable, e.g. no longer has a handle
• No Java code can use that object anymore
• The object becomes available for garbage collection

9

Creation

Initialization

Usage
Loss of 

Reference

Garbage 
Collection



Binghamton

University

CS-140

Fall 2020

Garbage Collection

• Periodically, the JVM performs "garbage collection"

• Recycles all unreachable objects
• Returns their memory so they can be used for other objects

• You don't need to delete objects
• Just lose reference

• Simplifies coding
• but causes run-time increase

10

Creation

Initialization

Usage
Loss of 

Reference

Garbage 
Collection


