Binghamton CS-140

University Fall 2020

Object Life Cycle

’\
Garbage e

Loss of Usage
Reference [g

CS-140
Fall 2020

Binghamton

University

Defining Constructors

* A constructor is java code that is almost the same as a method
* The name of a constructor must be the class name itself!

e Since constructors are so much like methods, we will talk about
constructors as if they are methods (but point out differences)

Binghamton CS-140

University Fall 2020
Constructor implicit "this" reference

 Constructors are like instance methods - never "static"

* When a constructor is invoked, the JVM has already created a new object in
the correct class, using "heap” memory

 All the fields in that new object are initialized to zero or null
* Numeric fields initialized to zero
* Character fields initialized to null (unprintable empty character)
* References are initialized to null (uninstantiated)

class name

this f1 name null

S EmE=e e {2 name 0.0

Binghamton CS-140

University Fall 2020

Constructor definition syntax

No return type!

class classname
modifiers classname (parameters) {

No-parameter Constructors are optional

If null/0 field initializations are OK.

Cannot be "static"

No "return’” statement.
Implicitly returns "this"

Binghamton CS-140

University Fall 2020

Typical Constructor

class Rectangle {
int X; int y; int width; int height;

public Rectangle(int x,int y, int width, int height) {
this.x=Xx; this.y=y;
this.width=width; this.height=height;

Binghamton CS-140

University Fall 2020

Alternative constructor using “this”

class BankAccount { U Special Topic 3-1]

double value;
public BankAccount(double value) {
this.value = value;
System.out.println("New account balance: " + value);

}

public BankAccount() {// Instead of the null constructor...
this(0.0); // Invoke constructor w/ parameter

"this" refers to this class,

s "this" must come first!
not this object. 6

Binghamton CS-140

University Fall 2020

Example: java.awt.Rectangle

public Rectangle(int x, int y, int width, int height) {
this.x=Xx; this.y=y; this.width=width; this.height=height; }

oublic Rectangle() { this(0,0,0,0); } // redundant null constructor
oublic Rectangle(Point p) { this(p.x,p.y,0,0); }

oublic Rectangle(int width, int height) { this(0,0,width,height); }
oublic Rectangle(Dimension d) { this(0,0,d.width,d.height); }
oublic Rectangle(Point p, Dimension d) {

this(p.x,p.y,d. Wldth d.height); }
public Rectangle(Rectangle r) { this(r.x,r.y,r.width,r.height); }

Binghamton CS-140

University Fall 2020

Constructor Invocation /N

Initialization

]

 Invoked as: new c/ass(constructor_arguments): \
« class - Class of the newly created object -
e constructor_arguments - Any arguments required to create the object

 Constructor “method” name must match class name!

* Java creates a new object
 All fields are initialized to zero or empty or null [Sect. 2.4

(5}

* Constructor initializes field values
 Constructor implicitly returns a reference to this
BankAccount checking = new BankAccount(249.37);

CS-140
Fall 2020

\
/

Binghamton

University

Using Objects

Loss of Usage
Reference . g

* You can use an object as long as you have a
reference variable that references that object

* There may be several references to the same object

» References can be lost several ways
* Reference variable can be re-assigned to a different object
* Reference variables can go out of scope
* Referencing object can lose all references

* Once an object becomes unreachable, e.g. no longer has a handle

* No Java code can use that object anymore
* The object becomes available for garbage collection

Binghamton CS-140

University Fall 2020

Garbage Collection L EN
7

Collection

\

* Recycles all unreachable objects -
* Returns their memory so they can be used for other objects

* Periodically, the JVM performs "garbage collection”

* You don't need to delete objects
* Just lose reference

* Simplifies coding
* but causes run-time increase

