
Binghamton

University

CS-140

Fall 2020

Defining Methods
Part I

There’s a method in my madness.

1

Sect. 3.3, 8.2

Binghamton

University

CS-140

Fall 2020

Example Class: Car

How Cars are Described

• Make

• Model

• Year

• Color

• Owner

• Location

• Mileage

Actions that can be applied to cars

• Create a new car

• Transfer ownership

• Move to a new location

• Repaint

• Delete a car

2

Binghamton

University

CS-140

Fall 2020

Method Invocation

• Much more about method invocation in the next lecture

• For now, think of method invocation like a function machine…
• You need to provide inputs to the method

• You need to start the method

• The method will produce outputs

• This lecture looks inside the method

3

Binghamton

University

CS-140

Fall 2020

Method Definition Syntax

class classname {

modifiers returnType method_name (parameters) throws {

body

}

}

modifiers : access: public private protected
also: static abstract final synchronize native strictfp

returnType : Any (primitive or reference so far) type or void

method_name : Any valid identifier (starts w/ lower case by convention)

parameters : Next page or so.

throws : later… ignore for now

body : Java instructions to perform the action

4

Sect. 3.2, 3.3

Binghamton

University

CS-140

Fall 2020

Example Method Headers

public static void main(String[] args) { …

int getIndex(int n) { …

public void println(String x) { …

public GridLayout(int rows, int cols, int hgap, int vgap) {…

public static int sum(int… numbers) { …

5

Modifiers

Return Type

name

Parameters

Binghamton

University

CS-140

Fall 2020

Method Modifiers

• Access Modifiers:
• public – method can be used by all java code

• protected – method is visible in super-classes* and in the package

• package-private – method is visible only to java code in the package
• This is the default if nothing else is specified

• private – method is visible only within the class

• static vs. dynamic : Later this lecture

• abstract, final, …. we’ll talk about later

6

* We’ll talk about super-classes later

Binghamton

University

CS-140

Fall 2020

Return Type

• Type of data which the method returns to the caller
• The actual value returned will be specified in the body of the method

• Required for all methods!
• Use void to indicate method does not return anything

• The only data outside the method that the method can change
EXCEPT for any objects referenced in the parameters

7

Binghamton

University

CS-140

Fall 2020

Parameters

• Comma separated list of things that look like variable declarations
• Inside the method, treated like a variable

• Each parameter is a positional place-holders to hold copies of the
input values
• When a method is invoked, the invocation contains one argument for each

parameter… that becomes the initial value of the parameter

• The last parameter in the list may specify a variable length list of
values. If so, it must be specified as

type … name
where name is interpreted as an array within the method.

8

Binghamton

University

CS-140

Fall 2020

Method Body

• The instructions used to perform the desired action(s)

• This is that actual Java code!

• Java instructions are primarily:
• Local declares

• Assignment statements with expressions

• Control Flow

• This course assumes you will learn the details of these on your
own (They are similar to other languages.)

9

Binghamton

University

CS-140

Fall 2020

Note: No Code in Objects

• In section 2.3 of the text, there are diagrams like:

• Despite these pictures, there is no actual CODE
stored in the object!

• The object ONLY contains the values of the fields
for that object

• The code is stored in memory only once for the entire class

10

Binghamton

University

CS-140

Fall 2020

Local Variables

• Any value used temporarily within a method, like a counter for a loop, is
kept in a local variable

• Local variables are not available outside the method. (local scope)

• Local Variable Syntax:

class classname {

modifiers returnType method_name (parameters) {

type variable_name;
type variable_name = initial_value;

}

}

11

Binghamton

University

CS-140

Fall 2020

Declaring Variables

• Variables must be declared and initialized before they are used
• Java is an imperative language, and this is typical

• Enables compiler to check to make sure variables are used correctly

• Declaration and initialization can be combined

• Declaration
• specifies “type” – how this variable will be used and what values are valid

• specifies “name” – how you will refer to this value from now on

• Initialization
• specifies the first value that the variable will have.

12

Sect. 2.2

Binghamton

University

CS-140

Fall 2020

Local Variables Schematically

double precipAug = 3.59;

13

3.59e0

precipAug

