
Binghamton

University

CS-140 

Fall 2020

Using
Java Fields

1



Binghamton

University

CS-140 

Fall 2020

Referencing Instances of Objects

• There may be many objects of the same class instantiated at any 
given time

• Java keeps a "reference" to the objects to allow us to distinguish 
one object from another.

• References may be assigned to a "Reference Variable" – a variable 
used to keep a reference to a single object

• Fields are accessed by specifying: reference_variable.field_name

2



Binghamton

University

CS-140 

Fall 2020

The "this" reference variable

• When you invoke a method, you always invoke "from" an instance of an 
object, using a reference variable e.g. 

myAccount.writeCheck(127.32,"Sprint");

• Inside the method, the object referenced by "myAccount" is referenced 
by the reference variable "this"

if (this.balance < amount) { // overdraft

3

Reference to an 
Account class Object

method invocation Parameters



Binghamton

University

CS-140 

Fall 2020

Implicit "this"

Inside a method, if a variable name is not a local variable, Java 
assumes it is a field, and automatically adds the prefix "this."

4

class Account {
double balance;
…
Boolean writeCheck(double amount, String to) {

if (this.balance >= amount) {
this.balance -= amount;

if (balance >= amount) {
balance -= amount;

…
}

}

Implicit "this." added
by Java



Binghamton

University

CS-140 

Fall 2020

Field scope

• "Scope" – the code in which a field can be read or written to

• Field scope depends on access declaration
• private: scope is the class in which the field is declared

• package-private: scope is the package in which the field is declared

• protected: scope is the package in which the field is declared and all 
sub-classes of the class in which the field is declared

• public: scope is any Java code

• Note: still need a valid object reference to access an object

5



Binghamton

University

CS-140 

Fall 2020

Class (Static) Variables

• If you use the static keyword, that changes a field into a class 
variable instead of a normal field

• Class variables have a single, global value, shared by all objects
• Created when the class is loaded – the start of the program

• Deleted when the class is dismissed – the end of the program

• May be initialized when declared

• Scope depends on access declaration, like fields

• Often used to keep track of things which a higher level class could 
take care of

6



Binghamton

University

CS-140 

Fall 2020

Example Class Variable
class Widget {

String wtype; String dateMfg;

static int count=0;

public Widget(String t) {

this.wtype=new String(t);

count++;

… }

public static void howMany() {

System.out.println(

“Built “ + count + “ widgets.”

);

}

}

7

Class variable declaration
Scope: package-private

Initialized to zero

Class variable reference
No implicit "this."

One variable for ALL objects

Class variable reference
No implicit "this."

One variable for ALL objects



Binghamton

University

CS-140 

Fall 2020

Static Variable Schematically

8

Widget

type doo

dateMfg 9/13/18

Widget

type hickey

dateMfg 9/14/18

Widget

type dah

dateMfg 9/15/18

0

count

123


