
Binghamton

University

CS-140 

Fall 2020

Introduction to Object 
Orientation

1



Binghamton

University

CS-140 

Fall 2020

Computer Program

2



Binghamton

University

CS-140 

Fall 2020

Programming Language

• It's really hard to write programs using the binary machine 
language

• Write a program in a more readable "Programming Language" and 
translate that programming language into binary machine 
language (on Windows, .exe file)

3

Translator



Binghamton

University

CS-140 

Fall 2020

What’s in a Language?

• Why learn different languages?
• They are all expressive

• Some languages are easier to code than other languages
• APL: 𝑥 ← 3 4 𝜌 𝜄 11

• Some languages yield code that performs better

• Some languages have really useful libraries

• Trade-offs between complexity and effectiveness

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

4

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html


Binghamton

University

CS-140 

Fall 2020

Programming Paradigm

5



Binghamton

University

CS-140 

Fall 2020

6

Programming Paradigms

Procedural
Object 

Oriented

Declarative

Functional Logic Mathematical

Imperative



Binghamton

University

CS-140 

Fall 2020

7

Programming Paradigms

Procedural
Object 

Oriented

Declarative

Functional Logic Mathematical

Imperative

Program specifies actions to take
User invokes program



Binghamton

University

CS-140 

Fall 2020

Imperative Programming

• Imperative: “giving an authoritative command”

• The kind of programming we are doing uses the following:
• We need to work with variables

• We need to give them values (assignment)

• We need conditional statements

• We need loops

• We need functions

• Imperative programming: “Commanding” the computer to solve 
our problems by writing a computer program

8



Binghamton

University

CS-140 

Fall 2020

9

Programming Paradigms

Procedural
Object 

Oriented

Declarative

Functional Logic Mathematical

Imperative

int factorial(int n) {

int f=1;

for (int i=2;i<=n;i++) {

f=f*i;

}

return f;

}

> factorial 5

120



Binghamton

University

CS-140 

Fall 2020

10

Programming Paradigms

Procedural
Object 

Oriented

Declarative

Functional Logic Mathematical

Imperative

Program specifies facts
User specifies goal



Binghamton

University

CS-140 

Fall 2020

11

Programming Paradigms

Procedural
Object 

Oriented

Declarative

Functional Logic Mathematical

Imperative

factorial(x){

x<2: x;

x>=2: x*factorial(x-1);

}

>factorial(5)

120



Binghamton

University

CS-140 

Fall 2020

Object Oriented Programming

• Sees the entire world as “objects” – computer models of real things

• “Object” dictionary definition:
• a material thing that can be seen and touched

• a person or thing to which a specified action or feeling is directed

• Objects are defined by two things:
• What is the data that describes the object: fields

• What are the actions that can be performed on the object: methods

12



Binghamton

University

CS-140 

Fall 2020

Object Orientation – Why classes?

• Similar objects share:
• Same list of fields (attributes)

• Same list of actions

• Group similar objects into a “class”
• a set or category of things having some property or attribute in common 

and differentiated from others by kind, type, or quality

• class is the abstract view of any object in that class
• Actual physical object or

• Hypothetical object

13



Binghamton

University

CS-140 

Fall 2020

What’s “in” a class?

14

Class

Fields
Data used to describe 

the object

Methods
Functions used to 
access/modify an 

object

Chap 2.1



Binghamton

University

CS-140 

Fall 2020

Student Object
Name: Janice Rey
B Number: 0034216
GPA: 3.28

Object Instantiation

• The process of creating an object of a specific class

• Often requires specification of object attribute values
• Some attributes can have default or automatically generated values

• Student Janice Rey is one “instance” of the Student class

15

Student Class
Name:
B_Number:
GPA:

Student Object
Name: Janice Rey
B_Number: 0034216
GPA: 3.28



Binghamton

University

CS-140 

Fall 2020

16

Programming Paradigms

Procedural
Object 

Oriented

Declarative

Functional Logic Mathematical

Imperative

class Factorial {
int n;
Factorial(int n) { this.n=n; }
int value() {

int v=1;
for(int i=2;i<=n;i++) { v=v*i; }
return v;

}
public static void main(String args[]) {

int n=Integer.parseInt(args[0]);
Factorial f=new Factorial(n);
System.out.println("Factorial " + n +" = " + f.value());

}

}
> java Factorial 5
Factorial 5 = 120



Binghamton

University

CS-140 

Fall 2020

Object Oriented Design – First Pass

• Think about the kinds of objects you want to model

• Classify those objects
• Divide the objects into classes – objects which share data and methods

• Define each class, tell the compiler:
• The name of the class

• The attributes used to define the class

• The actions that work on objects in that class

• Then write imperative code to implement methods (actions)
• instantiate and manipulate objects

17



Binghamton

University

CS-140 

Fall 2020

Object Oriented Encapsulation

• Concept: Leave dealing with cars up to the car experts

• If you aren’t a car expert, don’t go under the hood!

• Make one place the “auto-mechanic” place

• That place has the only code that modifies car objects!

• If any one outside of that place wants to interact with cars, it has to 
invoke a service provided by the expert

18



Binghamton

University

CS-140 

Fall 2020

Bad Object Oriented Design

• The “Hello World” function is imperative, there is no “object” or 
“class” associated with that function

• All java code must be in a class!

• Abuse OO design: create a “class” of “HelloWorld” objects
• makes no sense, but we need to do it this way to satisfy java rules

19



Binghamton

University

CS-140 

Fall 2020

Why Object Orientation?

• Imposes structure on design
• Forces everything into an object/action way of thinking

• Reduces the number of choices we need to consider

• Establishes Responsibility / Traceability
• If a “car” object has inconsistent values, there is a bug in the car class… it 

can’t be anywhere else!

• Establishes Areas of Expertise
• Go to the car mechanic to get our car fixed… she knows how to fix it

• Re-Use
• I can use the same classes in different programs

20


