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Robot Companion: With You Always

Mahmoud Hamandi and Labhesh Popli

1 Introduction

With the recent developments in the field of robotics and artificial intelligence, robots
are increasingly being assigned tasks where they have to interact with their human
host. One interesting task for the robot is to accompany a human to their destination,
which can be a lecture hall in a university building, the gate at an airport or to a
conference room. In this scope we present an indoor robot service system which
will guide the human to their destination in a safe way through crowded areas. We
will integrate a Kalman Filter with a motion model based on the social force model
(SFM) presented by Helbing and Molar [4] to track humans about the robot. These
forces model different aspects of motion behaviors such as the motivation of people
to reach a goal, the repulsive effect of walls and other people as well as physical
constraints. We present a method to learn the weights of the forces for each of the
humans in the environment to be able to track them better. In addition, once we
learn the preference of the escortee to follow the robot, we can deduce their intent to
follow and give controls to the robot accordingly.

2 Related Work

Luber et al. [7] presented a method to track humans based on the Social Force Model
(SFM). In [7] they build the motion model describing the human navigation, and
track the human with a Kalman Filter with each human’s respective motion forces
and observations.

On the contrary to the work presented by Ferrer et al. [2], [7] assumed that all so-
cial forces are equally weighted. While this approach can work for a simulator where
the simulated humans are moving according to these equations, it might fail in the
real world. Ferrer et al. proposed to learn the weight of each force from a collection
of human data, and then employ one value online. Although this approach works in
[2] where the robot is navigating with the learned social forces, this approach might
not work when tracking multiple humans in the real world, as each human might
have a different weight for each force.


http://www.nd.edu/~ndjfl/
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3 Planned Work

Taking Inspiration from the work done on Beam - a collaborative autonomous mobile
service robot [8], our project builds a similar robotic system on Turtlebot (Turtle-
Escort), which will escort a visitor from its current position to a given goal location
referred to as "Home’. Due to some unforseen hardware issues suspending any ac-
cess to the Beam platform, we implemented our system on our lab’s (People and
Robots Lab) Turtlebot. As Beam is back online in the future the same system will
be transfered back to it. For the time being, we have fixed a tripod on the turtle-
bot to attach a a depth camera at human height. The turtlebot was stabilized by the
weight of the laptop placed on top of it, in addition to a small weight placed on one
of the tripod’s legs as shown in 1. This scheme of robot accompanying the visitor
can be useful in scenarios such as a main event in a college or stadium where all
humans have to go, while at the same time people visiting need assistance and are
not knowledgeable of the space map.

In what follows we will explain the hardware used in this project, as well as detail
the algorithms that we will implement.

3.1 Hardware In this project we will require one Turtlebot as the base (available in
our lab), as well as a laptop for real-time data processing, an NVidia Jetson TK1,
and four IR-depth cameras for human and environment detection. The two process-
ing hardware are required for the real-time processing of the data, as our algorithm
requires full observability of the environment. The four depth cameras will help us
detect all humans in the scene within the cameras’ range.

3.2 Ray Casting to detect Human Distance from Walls To ensure a safe distance of
human from walls with respect to sensor readings from robot, we will implement ray
casting algorithm and pass it to SFM algorithm to calculate the intent of human.

3.3 Human Detection In this project we require the robot to detect all humans in
the scene through the four depth cameras as this information is required for both the
intent learning of the human being escorted and ensure the safety and comfort of all
humans. Due to the difficulty in accomplishing a detection in all four camera with
off the shelf hardware, we decided to detect humans in only one camera, and have
the human escort the robot instead of the robot escorting the human. The assumption
made here is that the space visible for the robot in one camera is the only part of the
environment affecting the human escortee.

Our initial attempt was to use the following ROS packages to do so. The first
package [1] extract humans in an image. After extracting the humans in the image,
we will identify their location using the depth image. The second package [5] relies
on LiDAR scans - provided by the depth cameras in our project- to detect humans
legs.

After thorough research Mahmoud realized that [6] provide an open source ROS
package that implements many human detectors for any one to test them, as well as
a detector that fuse three different human detectors to provide a more accurate final
detection, which we rely on in this project.
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Figure 1 Figure showing the turtlebot setup. The setup contains the base of the
turtlebot, the laptop on top, the tripod holding a depth camera for human detection, a
depth camera — not visible— for navigation, and a balancing weight fixed to one end
of the tripod.

3.4 Human Tracking and Intent Learning We rely on the social force model pre-
sented by Helbing and Molar [4] to track humans and learn their intent. These social
forces for a human following a target with a root in the environment can be expressed
as:

F = aoFropor—1 + o Fy —h + 02 Fopstacte—human + a3Ftarget- (D

Where F is the resulting force driving the human, Fpor—human 1S the force pushing
the human towards or away from the robot, Fj,man—numan 18 the force pushing one
human towards or away from other humans, F,pgucie—human 18 the force driving
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humans away from obstacles, and Fi, g is the force pushing the human to their
target. In the case where the target is the actual robot Fig.; would be included in
the Fopot—numan- Each of the forces is exponentially related to the distance between
the two objects enforcing it, on the exception of the last force that is linearly related
to the human speed. s represent the weight of each force, and it can be considered
as the intent of the human to consider this force while navigating. For example, if
the human ignores the robot’s existence completely, the corresponding ¢ should be
zero, if they follow the robot it should be positive, while if they run away from the
robot the & should be negative.

Mathematically the forces are represented as follows:

= Ake(dk_dkAhuman)/Bk dk’human

; 2

Fk—human dk,human
where k is one member of the set {robot, human,obstacle}, Ay, dyand By, are fixed
parameters specific for each member of the set —[2] presents a framework to learn
these parameters — di human 1S the distance vector between the human and the corre-
sponding object and dj pman its norm.

On the other hand:

Earget == K(VO - V), (3)

where « is a fixed parameter, v¥ is the desired velocity and v is the actual human
velocity.

While this force is accurate for a moving target, where the human should be matching
its velocity with the target’s, it does not adapt to the velocity preference of each
human when following a fixed target, and does not reflect the difference in direction
between the human trajectory and the one leading to the target. Instead we model
the force to a fixed target as:

\4
Earget = K;(l - COSQ), €]

where 6 is the angle between the direction from the human to the target and trajec-
tory traversed by the human, and v is the norm of the human velocity. This equation
places a large emphasis on the difference in direction between the actual trajectory
and the one leading to the target, which helps the robot learn the intention of the
human to reach a certain target.

For a fixed set of weights, the social force can be calculated for each of the de-
tected humans based on their locations, the robot location, and the location of the
obstacles as depicted by the constructed map. Upon calculating the social force we
can model the human motion human as presented in [7]:

[Xt:| - |:th + v, 1At + gAt2 )
Vi v;—1 +FAt

where x; is the position and vj is the velocity of the human at time step i, and Az is
the time difference between the two time frames. Once we have the motion model
of each human, we can apply KF localization to find the position distribution of each
based on their observation.
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Although [2] presented values for the typical as and [7] calculated them based
on average human weight, we cannot ignore that each human navigates with their
own based on their personality. In fact, these parameters can change even from one
country to the other, or one environment to the other. As such, in this work we
suggest to start with a guess about each of the as and then update them for each
human as we receive more observations. Specifically, we can update the parameters
from the difference between the expected location of the human based on the estimate
of their position with respect to the previous belief and their motion model P, |, |
and the updated position distribution after the observation of their location P, ,,. We
refer to their difference as dif f(P;_) = h(Py,|x, — Py,|x,_,)» Where h(x) extracts the
difference in the two resultant forces from the difference in positions.

From dif f(F;_1), we can learn the as as :

0 = 01 +dif f(P—1) £y (6)

where f is the average vector of individual interaction forces presented in 1 between
instances at t — 1 and ¢, and 7y is the learning rate.

We are mostly interested with two of the interaction weights: the value of «
multiplying the human — robot force which represents the intention to interact with
the robot if the robot is independently navigating, or it would represent the intention
to follow or escort the robot if the human and the robot are in an escorting phase.
The second force is the force to target, which can show the interest of the human to
reach a certain target. To our knowledge, we are the first in the literature to notice
the ’intention’ component hidden in the social force model, and we are the first to
provide a method to learn these parameters online for each human.

4 Experiments

Unfortunately the SFM algorithm was difficult to test on a real robot although
Mahmoud coded a ROS node to calculate the forces and learn the intention weights.
However, we were able to test the algorithm in 2-dimensional simulator, similar to
the one presented in [3]. The simulator includes a real world environment with hu-
mans navigating. The humans’ paths are extracted from the ETH walking pedestrian
dataset [9].

The experiments conducted where done solemnly to identify if the robot can learn
the intention of a human to reach a goal. As such, we picked scenarios where the
human is not always going to the target, as in, going to the target part of its trajectory
and going away from it in another part.

Labhesh carried out experiments on Turtlebot and used its sensors to check for
human legs and detect human distance from the robot. Based on the global position
of humans and odometer readings from Turtlebot, updated position was passed to
Turtlebot and made him follow the human.

The second experiment was carried out by Labhesh to implement a Ray Casting
node to check human distance from the walls, based on the length of rays which
are casted on the nearby objects, and calculate the shortest distance from the first
collision.
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5 Project Outcomes

The expected outcome was to have a fully autonomous system controlled by a hu-
man through voice to go to a certain position or follow a human. When following a
human, it has to identify the intent of the human to escort, and stop once the human
stops escorting. We were able to finalize some parts but not the entire system as
shown below.

Mahmoud have coded the human tracking and intention learning in both the 2-
dimensional simulator and ROS, and tested it in the simulator.

The code in ROS required a ray tracing software, which Labhesh coded and
investigated thoroughly. Labhesh also made ROS nodes for Turtlebot to detect
human legs and follow humans to their current position. Although much success
was not achieved through ray casting software, thorough research was carried out in
the process of understanding. Figure 2 shows example trajectories with the corre-
sponding intention to follow a target. As shown in these images, we can clearly see
the value of the intention decreasing slightly in the top part and steeply in the second
part, which shows that the algorithm is actually learning that there is a change in
the human’s intention. Further in these scenarios we have observed that the human
tracking gets better over time up until the human direction changes. If we were using
fixed weights, we would expect the tracking not to correct itself after that; however,
because we are learning the weights online, the tracking fixes itself after observing
a few steps as shown in 3.
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Figure 2 Two trajectories showing a human changing their direction and the corre-
sponding effect on the intention to follow the target. In these images, the yellow
line represent the human trajectory, the blue ellipses represent the other humans, the
green bulls-eye the starting point, the red bulls-eye the goal target, the purple dot and
ellipse the estimate position with its variance, and the yellow dot and ellipse the cor-
rected position and its variance. The graph on top shows the change in goal seeking
intention throughout the human path.
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Figure 3 Two trajectories showing a human changing their direction and the corre-
sponding effect on the intention to follow the target. In these images, the yellow
line represent the human trajectory, the blue ellipses represent the other humans, the
green bulls-eye the starting point, the red bulls-eye the goal target, the purple dot
and ellipse the estimate position with its variance, and the yellow dot and ellipse
the corrected position and its variance. The graph on top shows the change in goal
seeking intention throughout the human path. The three images show in the first the
estimated and updated positions to be almost the same, then after the human changes
direction the estimated and updated position become far apart, then after we learn the
intention of the human we can see the estimated and updated position to be almost
the same again.
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6 Task Division

Labhesh Popli:Incorporation of the human detection software with leg detection and
robot following the human code. Calculating a safe distance of humans in its envi-
ronment through Ray Casting software implementation and testing. Finalizing the
human following part and testing it on the real robot.

Mahmoud Hamandi: Testing of the KF localization, as well as the intent learning in
the simulator; furthermore he coded the KF localization and intent learning in ROS,
tested the human detector, and made the hardware changes to the turtlebot.

Finally, we were not able to develop the voice command part which was supposed to
wrap all parts together.

7 Conclusion

We presented a system for a human to escort a robot to a target location unknown to
the robot. The robot detects and tracks the human and follows them to the location,
while learning their intent online. Furthermore, we showed the viability of our in-
tention learning algorithm through simulation, which will helps us in future tests to
stop the robot automatically when they detect that the human is no longer escorting
1t.
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