
Dixon: TurtleBot Voice Commands
Alex Rhodes

Cleveland State University
Email: awrhodes9723@gmail.com

Sujay Bajracharya
Cleveland State University

Email: sujaymanb@gmail.com

Abstract—Voice commands are an accessible method of inter-
acting with a robot. This report describes Dixon, a project that
allows the use of simple voice commands to control a TurtleBot.
It details the various components of the system, as well as how
they are implemented, and describes the results of how successful
the system was. In addition, the paper also outlines the various
challenges and limitations of the project and describes future
work on how to improve the concept.

Index Terms—TurtleBot, voice commands, speech recognition,
Dixon

I. INTRODUCTION

Dixon is a ROS package that enables a TurtleBot to act on
voice commands issued by a user [1]. Dixon can respond to
simple movement commands that are either local or global,
local meaning relative destinations (e.g. “forward,” or “back-
ward”) and global meaning destinations that are predefined
(e.g. Room 202).

The main objectives of this project were to develop a
package that processes vocalized phrases such as “move
forward,” and “go to x destination” and generates command
signals based on them. Secondarily, we wanted to create a
web application that allows a user to interact with the ROS
package remotely.

The reasoning behind this project was that currently, human-
robot interaction (HRI) is quite obtuse and mostly limited to
programming. Vocal, haptic, and somatic input methods are
much more intuitive to users that cannot program. As we are
both quite interested in Natural Language Processing (NLP),
we decided to focus on a voice input system.

Dixon has four main components: the speech recognition
component, parser, voice or feedback component and the
navigation component. For speech recognition we used pocket-
sphinx to implement the speech recognition for Dixon. There
is also a pocketsphinx package for ROS that publishes the
results of the speech recognition to the topic.

For the parser, we utilized a shallow semantic parser to
perform a keyword search on the transcription returned by
pocketsphinx. The parser searches for command and desti-
nation keywords such as “go,” and “forward,” and generates
a command based on words it detects. It then generates
a response for the user, either an affirmative or negative
response.

Once a valid command has been generated, the naviga-
tion module checks whether the required movement is lo-
cal or global. If the command is for local movement, e.g.

“forward” or “backward”, then the navigation node pub-
lishes the corresponding Twist messages to the topic “mo-
bile base/command/velocity”. On the other hand, if the com-
mand is for global movement, i.e. move to a location on
the map, then Dixon navigates to the location using actionlib
“goals”. If the command is “stop”, then the command velocity
is set to zero for local movement, and a goal to the current
position is sent for global movement.

In order to provide vocalized feedback to the user, the
University of Edinburghs Festival speech synthesizer was used.
Festival is a free and open source speech synthesizer, and the
ROS package sound play provides an interface to send the
synthesizer text to be synthesized.

The paper is organized in the following way. Section II, III,
IV, and V describe the speech recognition, parser, navigation
and voice components of Dixon respectively along with the
topics they subscribe and publish to. Section VI describes the
results of the tests conducted to measure the effectiveness
of the system. Section VII talks about the limitations and
challenges faced during the development of Dixon. Finally,
section VIII contains a description of the future work and the
conclusion to the report.

II. SPEECH RECOGNITION

A. pocketsphinx

Dixon uses the pocketsphinx ROS package for speech
recognition. Pocketsphinx is a more portable implementation
of CMU Sphinx, developed at Carnegie Mellon University
(CMU), which is a Hidden Markov Model (HMM) based
speech recognition toolkit [2] [3].

B. Topics Published

The pocketsphinx package for ROS publishes the results of
the speech recognition to the topic “/recognizer/output”. We
designed our parser node to subscribe to this topic in order to
parse the command.

III. PARSER

A. Shallow Parser

Our parser performs a keyword search on the transcription
returned by pocketsphinx. It searches for command such as
“go,” “move,” and “head,” and destinations such as “forward,”
“backward,” “alpha,” and “beta.” “Alpha” and “beta” are
placeholder names that could easily be replaced with real
destination names.



TABLE I
MESSAGE COMPOSITION

Field Description Data Type
command Command String
destination Destination String

local Local Destination Flag Bool
x Destination X Coordinate Float32
y Destination Y Coordinate Float32

B. Command Message Structure

[t] The parser generates a command based on the keywords
detected of the following form: command, destination name,
local flag, destination x coordinate (if applicable), destination
y coordinate (if applicable). Table 1 describes the structure
of the command message. The command can be either a
movement command (“move,” “go”) or a stop command
(“stop,” “abort”). The destinations can be general directions
(“forward,” “backward”) or predefined points on the map that
have names attached. The local flag is a boolean value that
informs the navigation node whether the destination is local
or global, and the X and Y coordinates of the destination which
correspond to the location on the map.

C. Topics Published and Subscribed

The parser subscribes to the topic “recognizer/output”. This
topic contains the result of the speech recognition performed
by the pocketsphinx node. The string message from this
topic is used to generate the command. The parser node
publishes to two nodes. First, it publishes responses to the
“dixon response/response” topic which is used by the voice
node to generate feedback to the user. Second, the command
message is published to “Dixon/command” which is used by
the navigation node to carry out movement actions.

IV. NAVIGATION

A. RVIZ

RVIZ is the “Ros-Visualization” package that can be used
for various mapping and navigation related tasks. It allows
the map to be viewed and even set navigation goals or view
the progress when creating a map. Along with gmapping, we
used RVIZ to create a map of the lab where the tests were
conducted.

B. gmapping

To create the map of the lab shown in figure 1, we used
the gmapping package for ROS which provides a wrapper
for the “Gmapping” Simultaneous Localization and Mapping
(SLAM) algorithm implemented by OpenSLAM. Gmapping
is a Rao-Blackwellized particle filter based SLAM algorithm
to create occupancy grid maps which we used for robot
navigation [4] [5]. The ROS package allows us to use the
“Astra” depth camera on the TurtleBot to create the map.

Fig. 1. Map of the Robotics Laboratory

C. Navigation Stack

amcl is the ROS package that implements the “Adaptive
Monte-Carlo Localization” to track the position of the robot
on a known map [6]. We use the amcl pose topic to get the
current position of the robot on the map. It is part of the ros
navigation stack that we use for global movement commands

D. actionlib

The actionlib stack is a package that provides a client-
server interface to send tasks to the robot. A task could be
sending a navigation goal, for example. We used actionlib for
the global movement portion of the navigation node which
involves moving to given coordinates on a map.

E. Dixon nav Node

The dixon nav node carries out the navigation command
on the robot once the parser has found a valid command and
published it. The node first checks whether the “local” flag is
set. If the flag is True then the node checks the “destination”
part of the message to see what direction the robot needs to
move in. Then, the linear direction variables and the variable
that keeps track of which type of movement is being carried
out are set accordingly. The node constantly publishes the
velocity to the “mobile base/command/velocity” in a second
thread when local movement is required. If the local movement
is not set then the node uses actionlib to send a navigation goal
to the coordinates that are in the message. If the command is
stop, the node checks which type of movement is being carried
out currently. If local movement, it sets the velocity to zero
and for global movement it sends a goal to the Dixons current
coordinates.



Fig. 2. The results to the global commands with built-in mic tests.

F. Topics Published and Subscribed

The navigation node subscribes to the topic
“Dixon/command” which contains the command message
published by the parser. It also subscribes to the “amcl pose”
topic to get the current position of the robot on the map.
Then, if local navigation is required then the node publishes
to the topic “mobile base/command/velocity”. Otherwise, the
node uses actionlib which uses its own respective nodes.

V. VOICE

A. sound play

University of Edinburghs Festival is a framework for build-
ing speech synthesis systems [7]. Festvox is a voice synthe-
sization implementation of Festival that can be used for text
to speech. Sound play is a ROS package that enables a robot
to play sounds, either pre-made sound bites or synthesized
speech created using the Festvox implementation of Festival.

If a string is published to a topic that sound play subscribes
to, it will generate speech using Festvox. We used this feature
of sound play to synthesize Dixons voice in the dixon voice
node of our package.

B. Topics Published and Subscribed

The voice node subscribes to the “dixon respose/response”
topic which contains the response generated by the parser.
The string contained in the message is then used along with
sound play to generate a voice response. These topics are
illustrated in figure 5.

VI. RESULTS

In order to test the accuracy of Dixons command recogni-
tion, we performed several trials. In the first trial, we tested
four individual global movement commands five times each
for a total of twenty trials using the built-in microphone of
the netbook running ROS. The commands given were “Dixon,
go to Alpha,” “Dixon, go to Beta,” “Dixon, go to Gamma,”
Dixon, go to Delta. In figure 2 the results of this trial are
shown. Destinations “Alpha,” “Beta,” and “Delta,” all had
the same results, with two successful recognitions. “Gamma,”

Fig. 3. The results to te global commands with improved mic tests.

Fig. 4. The results to the alternative command keyword test.

however, had four successful recognitions. In addition, for
every successful recognition the command given was carried
out without error. A possible reason for this disparity in
successes is the word “Gamma.” As will be seen in a later trial,
pocketsphinx also has a better rate of transcribing the word
“go” instead of an alternative like “move.” We hypothesize
that these results may be correlated, as the words “gamma”
and “go” both start with the letter “g” and are followed by
a vowel, possibly making them easier for pocketsphinx to
transcribe. This is just conjecture however, as we have not
performed trials to test this hypothesis.

In general, the overall success rate was not satisfactory. The
main reason for the low success rate was the poor quality of the
built-in microphone on the netbook. The microphone also had
a limited effective range of approximately 10 cm. In order to
improve the speech recognition, we carried out the trials again
with an external microphone. The microphone was found to
have a longer effective range. figure 3 shows the success rates
with the new microphone. It is significantly improved as all
20 trials were successfully recognized.

Besides the hardware limitations we found that there were
some issues recognizing particular words and their success rate
was lower than others. For example, figure 4 shows the results
of the tests for alternate move commands. The commands



Fig. 5. Graph of all active nodes in the Dixon ROS package.

“Go” and “Head” had a similarly high success rate with all 10
trials, for “backward” and “forward” successfully recognized.
However, “move” had an anomalously low recognition rate.

VII. LIMITATIONS

A. Hardware Limitations

The main hardware limitation we ran into during devel-
opment and testing was the microphone. We found that the
quality of the microphone being used for voice to text can
make or break a transcription. A lower quality microphone
suffers from quite a limited range; The built-in microphone
we used initially was only capable of a maximum range of
10 cm. Not only does the quality of the microphone make a
difference, but the placement as well. The microphone being
placed in or on the robot causes it to pick up vibrations of the
robot moving and interferes with voice transcription.

In addition, most personal assitant products on the mar-
ket currently that utilize voice transcription come equipped
with an array of microphones that allows for accurate noise
cancellation and voice detection from many angles at far
distances. We, however, only used a single microphone during
development and testing.

B. Recommendation for Future Hardware

If we continue to develop Dixon in the future, we plan on
seeking out a better microphone setup. A high quality long
range microphone placed far away from the mobile base seems
like it would provide the best results.

C. Mapping Limitations

Our initial plans were to map out the second floor of the
Cleveland State engineering building, however due to time
constraints we were not able to do this. Instead, we mapped out
the Cleveland State Robotics Laboratory and used placeholder
global destination names (“alpha,” “beta”).

Considering Dixon can successfully navigate the laboratory
using the placeholder names, it is safe to assume that if a map
was provided of a larger area and destinations were defined,
that Dixon would be able to navigate this new area as well.

D. Web-app Limitations

Due to time constraints, we were not able to implement a
web app that can interface with Dixon so that users can provide
voice commands remotely. In addition to time constraints, we
are both fairly inexperienced with web development regarding
implementing speech recognition, so the decision to forgo the



web app was made. This decision allowed more time to be
dedicated to the core goals of the project.

VIII. FUTURE WORK AND CONCLUSION

A. Future Work

The current state of Dixon works as a prototype voice
command system that can be applied to mobile robots like
a TurtleBot. In order to improve upon this project, various
potential ideas can be explored. An improved parser with
deeper semantic parsing and natural language processing can
be introduced [8]. This will allow the robot to carry out
complex tasks and be more accurate in its understanding of
the tasks. Similarly, for improved task planning we can use a
dialog system to get more information from the user as well as
use a commonsense reasoning system to improve performance
and accuracy [9]. Additionally, a web app can be developed
that allows the issuing of commands remotely. Finally, im-
proved hardware like a microphone array can enhance the
speech recognition.

B. Conclusion

In conclusion, the goal of this project was to create a
simple voice command system in order to give movement
based commands to a TurtleBot. In addition, a web app that
allowed a user to remotely issue commands to a TurtleBot was
planned. The reasoning for these goals is that communicating
via vocalized inputs is much more intuitive and easy to use
than current methods, such as programming. Although other
input methods for communication with robots can be equally
as intuitive, we found that dealing with vocal inputs proved to
be the most compelling, yet achievable route. Our primary goal
of creating a simple voice command system was accomplished,
and exists in a working prototype state. Our secondary goal
was not completed in any sense, due to time constraints and
inexperience, however.

Dixon consists of the pocketsphinx voice-to-text ROS pack-
age, a shallow semantic parser, a voice synthesization node
that utilizes the sound play ROS package, and a navigation
node. In this report, we describe the technical details of these
components, as well as the implementation of the system as a
whole.

ACKNOWLEDGMENT

This project was done as part of the CIS 493 Autonomous
Intelligent Robots class at Cleveland State University. We
would like to that Dr. Shiqi Zhang for providing us the
opportunity to work on this project.

REFERENCES

[1] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng, “Ros: an open-source robot operating system,” in ICRA
workshop on open source software, vol. 3, p. 5, Kobe, 2009.

[2] D. Huggins-Daines, M. Kumar, A. Chan, A. W. Black, M. Ravishankar,
and A. I. Rudnicky, “Pocketsphinx: A free, real-time continuous speech
recognition system for hand-held devices,” in Acoustics, Speech and
Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE Inter-
national Conference on, vol. 1, pp. I–I, IEEE, 2006.

[3] P. Blunsom, “Hidden markov models,” Lecture notes, August, vol. 15,
pp. 18–19, 2004.

[4] G. Grisettiyz, C. Stachniss, and W. Burgard, “Improving grid-based slam
with rao-blackwellized particle filters by adaptive proposals and selective
resampling,” in Robotics and Automation, 2005. ICRA 2005. Proceedings
of the 2005 IEEE International Conference on, pp. 2432–2437, IEEE,
2005.

[5] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid
mapping with rao-blackwellized particle filters,” IEEE transactions on
Robotics, vol. 23, no. 1, pp. 34–46, 2007.

[6] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte carlo localization:
Efficient position estimation for mobile robots,” AAAI/IAAI, vol. 1999,
no. 343-349, pp. 2–2, 1999.

[7] A. W. Black and K. A. Lenzo, “Building synthetic voices,” Language
Technologies Institute, Carnegie Mellon University and Cepstral LLC,
vol. 4, p. 2, 2003.

[8] J. Thomason, S. Zhang, R. J. Mooney, and P. Stone, “Learning to interpret
natural language commands through human-robot dialog.,” in IJCAI,
pp. 1923–1929, 2015.

[9] S. Zhang and P. Stone, “Corpp: Commonsense reasoning and probabilistic
planning, as applied to dialog with a mobile robot.,” in AAAI, pp. 1394–
1400, 2015.


