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Abstract—Robots have been able to interact with humans
using natural language, and to identify service requests through
human-robot dialog. However, few robots are able to improve
their language capabilities from this experience. In this paper,
we develop a dialog agent for robots that is able to interpret user
commands using a semantic parser, while asking clarification
questions using a probabilistic dialog manager. This dialog agent
is able to augment its knowledge base and improve its language
capabilities by learning from dialog experiences, e.g., adding new
entities and learning new ways of referring to existing entities.
We have extensively tested our dialog system using a mobile
robot that is capable of completing object delivery and human
guidance tasks. Experiments were conducted both in simulation
and with human participants. Results suggest that our dialog
agent performs better in both efficiency and accuracy when
compared to one that does not learn from this experience and
another that learns using a predefined strategy.

I. INTRODUCTION

Mobile robots have been extensively used to conduct tasks
such as object delivery in the real world. Notable examples
include the Amazon warehouse robots and the Relay robots
from Savioke. However, these robots either work in human-
forbidden environments, or have no interaction with humans
except for obstacle avoidance. Researchers are developing
mobile robot platforms that are able to interact with and pro-
vide services to people in everyday, human-inhabited environ-
ments [9, 28, [7, 13]]. Some of the robot platforms can learn from
the experience of human-robot interaction (HRI) to improve
their language skills, e.g., learning new synonyms [26], but
none of them learn entirely new entities. This work aims to
enable the robots to simultaneously identify service requests
through human-robot dialog, and learn from this experience
to augment the robot’s knowledge base (KB).

A robot dialog system typically includes the following
four components: 1) A language understanding component for
converting spoken or text-based language inputs into a formal
representation that computers understand; 2) A state tracking
component that estimates the current dialog state based on the
language understanding; 3) A dialog management component
that suggests a language action (e.g., clarification questions);
and 4) A language generator that outputs spoken or text-based
natural language. The dialog agent developed in this work
includes the four components, and further supports dialog-
based knowledge augmentation.

There are at least two types of dialog systems that can
be distinguished based on their design purposes. The first
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Fig. 1. Segway-based mobile robot platform used in this research.

type focuses on maximizing social engagement, e.g., Microsoft
Xiaolce, where the dialog agent usually prefers extended con-
versations. We are concerned with the second type of dialog
systems, often referred to as being goal-oriented, that aim at
maximizing information gain. Goal-oriented dialog systems
can be evaluated based on dialog efficiency and accuracy.
In this setting, people prefer dialog agents that are able to
accurately identify human intention using fewer dialog turns.

Goal-oriented dialog systems are necessary for language-
based human-robot interaction because, in most cases, people
cannot fully and accurately deliver information using a single
dialog turn. Consider a service request of “Robot, please
deliver a coffee to the conference room!” It is possible that
the robot does not know which conference room the speaker
is referring to, in which case it is necessary to ask clarification
questions such as “Where should I deliver a coffee?” To further
identify the service request, the robot might want to ask about
the recipient as well: “For whom is the delivery?” Although
such dialog systems have been implemented on robots, few
of them can learn to improve their language capabilities
or augment their KB from the experience of human-robot
conversations in the real world (Section [[I).

This work focuses on dialog-based robot knowledge aug-
mentation, where the agent must identify when it is necessary
to augment its KB and how to do that, as applied to our
Segway-based mobile robot shown in Figure [I] Partially
observable Markov decision processes (POMDPs) [8]] have
been used to construct dialog managers to account for the
uncertainty in language understanding [30]. We develop a



dual-track POMDP-based dialog manager to help the agent
maintain a confidence level of its current knowledge being
able to support the dialog, and accordingly decide to whether
augment its KB or not. After the agent becomes confident that
new entities are necessary so as to make progress in the dialog,
it decides where in the KB to add a new entity (e.g., as a new
item or a new person) by analyzing the flow of the dialog. As a
result, our dialog agent is able to decide when it is necessary to
augment its KB and how to do so in a semantically meaningful
way.

Our dialog system has been implemented both in simulation
and on a Segway-based mobile robot that is able to interact
with people using natural language and conduct guidance
and delivery tasks. Experimental results show that our dialog
system performs better in service request identification in both
efficiency and accuracy, in comparison to baselines that use a
static KB or update the KB using a predefined strategy. Ex-
periments with human participants suggest that our knowledge
augmentation component improves user experiences as well.

II. RELATED WORK

This work is related to existing research on robots interpret-
ing human language. We discuss applications where language
inputs are used for providing service requests, introducing new
concepts, and instructing a robot to conduct specific tasks.

Researchers have developed algorithms for learning to in-
terpret natural language commands. Examples include the
work of [Matuszek et al.| that has enabled a robot to learn to
understand navigation commands [13]]. Other examples include
the work of “Tell me Dave” [15], and the work of [Tellex
et al| that focused on a graph-based language understanding
approach [25]]. Recent research enabled the co-learning of
syntax and semantics of spatial language [23}16]. Although the
systems support the learning of language skills, they do not
have a dialog management component (implicitly assuming
perfect language understanding), making the methods not suit-
able for applications that require multi-turn communications.

Another research area that is related to this work focuses on
learning dialog strategies. For instance, the NJFun system [22]]
modeled the dialog management problem using Markov De-
cision Processes (MDPs) [19], and learned the dialog strategy
using Reinforcement Learning (RL) algorithms [24]. Recent
research on Deep RL (DRL) has enabled an agent to interac-
tively learn action policies in more complex domains [16]], and
DRL methods have been used to learn dialog strategies [29} 4].
The systems do not include a semantic parsing component. As
a result, users can only communicate with their dialog agents
using simple or predefined language patterns.

Mobile robot platforms have been equipped with semantic
parsing and dialog management capabilities. After a task is
identified in dialog, these robots are able to conduct service
tasks using a task planner. One example is the dialog agent
developed for the Kelia robot [12]. Integrated commonsense
reasoning and probabilistic planning (CORPP) has been ap-
plied to dialog systems, resulting in a commonsense-aware
robot dialog system [31]. Recent research further integrated

multi-modal perception capabilities, such as locations and
facial expressions, into dialog systems [L1]. Although these
systems enable a robot to identify human requests via dialog,
they do not learn from such experiences.

Thomason et al.| developed a dialog agent for a mobile
service robot that is able to conduct service tasks such as
human guidance and object delivery [26]. A dialog manager
suggests language actions for asking clarification questions,
and the agent is able to learn from human-robot conversations.
Recent research further enabled the agent to learn to simulta-
neously improve the semantic parsing and dialog management
capabilities [[17]. These methods focus on learning to improve
an agent’s language capabilities, and do not augment its
knowledge base in this process. This work builds on the
dialog agent implemented by Thomason et al., and introduces
a dual-track POMDP-based dialog manager and a strategy for
augmenting the robot’s knowledge base.

There are other dialog agents that specifically aim at knowl-
edge augmentation through human-robot dialog. An example
is the CMU CoBots that are able to learn procedural knowl-
edge from verbal instructions via human-robot dialog [14],
and learn task knowledge by querying the web [[18]]. Recently,
the instructable agent developed by |Azaria et al|is able to
learn new concepts and new procedural knowledge through
human-robot dialog [2]. Recent work enabled a mobile robot
to ground new concepts using visual-linguistic observations,
e.g., to ground new word “box” given a command of “move
to the box” by exploring the environment and hypothesizing
objects [27]. These agents are able to augment their knowl-
edge bases through language-based interactions with humans.
However, their dialog management components (if existing)
are relatively weak and do not model the noise in natural
language understanding.

She and Chai| developed a robot dialog system that focuses
on situated verb semantics learning [21]. Their dialog agent
uses RL to learn a dialog management policy, and uses a
semantic parser to process natural language inputs. However,
their work specifically focused on learning the semantics of
verbs, limiting the applicability of their knowledge augmenta-
tion approach.

The dialog agent developed in this work processes language
inputs using a semantic parser to understand users’ service
requests, leverages a POMDP-based dialog manager to handle
the uncertainty from the unreliable parser by asking clarifica-
tion questions, and augments its knowledge base when the
current knowledge is not sufficient to interpret the human
request.

III. DIALOG AGENT

In this section, we present our dialog agent that integrates
a decision-theoretic approach for dialog management under
uncertainty, and an information-theoretic approach for knowl-
edge management. Figure [2 shows an overview of our dialog
system. Next, we present our dual-track controller for knowl-
edge and dialog management, the language understanding
component, and the representation of our knowledge base.
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A pictorial overview of our dialog system, including a semantic parser for language understanding, a knowledge base represented by Answer set

programming (ASP) [S], and a dual-track POMDP for the management of knowledge base (KB) and dialog.

A. Dialog and Knowledge Management

Markov decision process (MDP) is a general sequential
decision-making framework that can be used for planning
under uncertainty in action outcomes [[19]]. Partially observ-
able MDP (POMDP) [8] generalizes the MDP framework by
assuming the world being partially observable. POMDPs have
been used for dialog management [30].

There are two POMDP-based control loops in our dialog
agent, resulting in a dual-track POMDP controller. One track
focuses on maintaining the dialog belief state, and accordingly
suggesting language actions to the agent. The other track
focuses on maintaining the belief of the current knowledge
being (in)sufficient to complete the task, and accordingly
suggesting knowledge augmentation.

1) Dialog Management Track: The dialog management
POMDP includes the following components:

o 5: (ST x 8T x SB)Uterm, where ST is the set of task
types (delivery and guidance in our case), S’ is the set
of items used in the task, S is the set of recipients of
the delivery, and ferm is the terminal state.

A AW U AC U AR is the action set. AW consists of
general “wh” questions, such as “Whom is this delivery
for?” and “What item should I deliver?” A® includes
confirming questions that expect yes/no answers, and re-
porting actions A% return the estimated human requests.
T:5xAxS —0,1] is the state-transition function.
In our case, the dialog remains in the same state after
question-asking actions, and reporting actions lead tran-
sitions to ferm deterministically.

R :S x A — IR is the reward function and the reward
values are assigned as:

r¢, ifse€ S,aec AC
R(s, a) ™, ifse S aec AV
s,a) = )
rt, ifseSac Al s®a
r=, ifse€SacAl s®a

where 7€ and " are the costs of confirming and general
questions, in the form of negative, relatively small values;

rT is a big bonus for correct reports; and r~ is a big
penalty (negative) for wrong reports.
Z:ZTuzPuZRU{zT, 27} is the set of observations,
where ZT, Z! and Z" include observations of task type,
item, and recipient respectively. z* and 2~ correspond to
“yes” and “ no”. Our dialog agent takes in observations as
semantic parses that have correspondence to elements in
Z. Other parses, including the malformed ones, produce
random observations (Section [[II-B).

O : S x A x Z Uinapplicable is the observation function
that specifies the probability of observing z € Z in state
s € S, after taking action a € A. Reporting actions yield
the inapplicable observations. Our observation function
models the noise in language understanding, e.g., the
probability of correcting recognizing 2zt (“yes”) is 0.8.
The noise model is heuristically designed in this work,
though it can be learned from real conversations.

It should be noted that this POMDP model is dynamically
revised (similar to [32]]), when new entities (Section [[II-C) are
added into the knowledge base. Solving this POMDP generates
a policy 7, which maps a belief to an action that maximizes
long-term information gain.

2) Knowledge Management Track: In addition to the dialog
management POMDP, we have a knowledge management
POMDP that monitors whether the agent’s knowledge is suffi-
cient to support estimating human intentions. The knowledge
management POMDP formulation is similar to that for dialog
management but includes entities for unknown items and
recipients.

The components of the knowledge management POMDP
are shown below, where transition and observation functions
are generated accordingly and hence not listed:

o« ST o S U {(sT, 81,5 | vsT € ST vs! € ST} u
{(sT,51,s%) | vsT € ST, Vst € SB} is the set of states.

It includes all states in S along with the states corre-

sponding to new entries that correspond to an unknown

item 3’ and an unknown recipient 5%,

o At :Au{al,a"} U AR is the set of actions including
the actions in A, two actions for confirming the unknown
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Fig. 3. An example of parsing a service request sentence using CCG semantic
parsing and A calculus.

item and recipient respectively, and AR, reporting actions
that correspond to the states in ST,
o ZT =ZU{2! 28} is the augmented observation set.

At runtime, we maintain belief distributions for both tracks
of POMDPs. Belief b of dialog POMDP is used for sequential
decision making and dialog management, and belief b+ of
knowledge POMDP is only used for language augmentation
purposes, i.e., determining when it is necessary to augment the
KB (Section [[lI-D). When observations are made (observation
z € Z), both beliefs are updated using the Bayes update rule:

O(s'ya,2) Y s T(s,a,s")b(s)

b = pr(z]a.b)

where s is the state, a is the action, pr(z|a,b) is the normal-
izing factor, and z is the observation. In our dialog system,
observations are made based on the language understanding
using a semantic parser.

Remarks: Fundamentally, one can merge multiple POMDPs
to unify the action selection process. We use a two-track con-
troller in this work, because the knowledge track is not used
for action selection. We believe separating the knowledge and
dialog tracks reduces the complexity of the entire framework,
and we leave formal analysis to future work.

B. Semantic Parsing for Language Understanding

In order to understand natural language and make obser-
vations for POMDPs, we use a semantic parser that builds
on the Semantic Parsing Framework (SPF) described in [LL].
The input of the semantic parser is natural language from
human users, and the output is a list of possible parses for
a given sentence. Using the semantic parser, the request in
natural language is transformed to a formal representation that
computers understand.

Figure |3| shows an example of the parser recognizing a
sentence. It can reason over the ontology of the known words
when it parses a sentence, e.g., james:pe and coffee:it. The
dialog manager can use this information to translate from
words to corresponding observation for the question asked by
the robot. If the language understanding fails (e.g., producing
parses that are malformed or do not comply with the preceding
questions), then a random observation from Z will be made
for the unknown part of the request.

C. Domain Knowledge Representation

We use Answer Set Prolog (ASP) [5], a declarative lan-
guage, for knowledge representation. The agent’s knowledge
base (KB), in the form of an ASP program, includes rules in
the form of:

lo+1li, -~-, ln, notly, ---, notl,4r

where [’s are literals that represent whether a statement is true.
The right side of a rule is the body, and the left side is the
head. A rule without a body is called a fact.

The KB of our agent includes a set of objects in ASP: {alice,
sandwich, kitchen, officel, delivery, - - - }, where delivery spec-
ifies the task type. A set of predicates, such as {recipient, item,
task, room}, are used for specifying a category for each object.

Using the above predicates and objects, we can use rules to
fully specify tasks, such as “deliver a coke to Alice”:

task(delivery).
item(coke).

recipient(alice).

One can easily include more information into the ASP-based
KB, such as rooms, positions of people, and a categorical tree
of objects. This ASP-based KB is mainly used for responding
to information queries, and task planning purposes, where the
query and/or task are specified by our dialog agent.

D. Our Algorithm for Simultaneous Intention Estimation and
Knowledge Augmentation

In this subsection, we first define a few terms and functions,
and then introduce the main algorithm for simultaneously
estimating human intention (service requests, in our case) and
augmenting the agent’s knowledge base. We use entropy to
measure the uncertainty level of the agent’s belief distribution:

n—1
H(b) == b(s;) - log b(s;)
=0

where H is the entropy function.

When the agent is (un)confident about the state, the entropy
value is (high) low. In particular, a uniform belief distribution
corresponds to the highest entropy level. We use entropy for
two purposes in our algorithm.

Rewording Service Request: If the belief entropy is
higher than threshold h (meaning the agent is highly uncertain
about the dialog state), we encourage the human user to
state the entire request in one sentence. Otherwise, the dialog
manager decides the flow of the conversation.

Entropy Fluctuation: We use the concept of entropy to
define entropy fluctuation (EF):

£ () =sign(H(b[1]) - H(b[0])) &
mm(H@pD_HmmD

where b is a belief queue that includes the three most recent
dialog beliefs, f(b) outputs true, if there is an EF in the last
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In this example the user requests a Pop to an novel recipient, Dennis, who is not yet included in the system’s ontology. The dialog system makes

observation for Pop but does not understand Dennis, so it selects another person at random as an observation (in this case, Alice). The users denies this
incorrect person choice, then confirms pop. The conversation continues with the system trying to figure out who the delivery is for, but it cannot yet reason
about Dennis, who is absent from the ontology. When the number of EFs crosses a specified threshold (5 in this case), Dennis is added as a new ontological
object. After that, the system asks some final confirmation questions to clear any confusion for example there may be some belief in Carol which is cleared
once the user replies no. The entropy continues to decrease until request is identified successfully.

Algorithm 1 Simultaneous Intention Estimation and Knowl-
edge Augmentation

Require: 7, h, A, M, M*, and a POMDP solver
1: Initialize b, b* with uniform distributions

2: Initialize EF counter ¢ < 0

3: Initialize queue b of size 3 with {b, b, b}

4: repeat

5: if Pr(sff=3%)>n, where s € b* then

6 Add a new recipient entity in KB

7 else if Pr(s! =3")>,, where s/ € b* then
8 Add a new item entity in KB

9: else if 6 > A then

10: Add (item or recipient) entity that is more likely
11: if f(b,t) is true then

12: 0+—d+1

13: if H(b) > h then

14: a < “Please reword your service request’
15: else

16: a <— 7T(b)

17: o + parse(human response)

18: Update b based on observation o and action a
19: b.enqueue(b)

20: if a € A. then

21: bt < update(b)

22: until s is term

23: return the request based on the last (reporting) action,

and the (possibly updated) knowledge base.

three beliefs (i.e., entropy of the second last is the highest or
lowest among the three), and & is the xor operator. Figure [
shows an example of EFs in a dialog.

Algorithm [I] shows the main operation loop of the dialog

system. 7y, is a probability threshold; & is an entropy threshold;
A is a threshold over the number of EFs; and M and M™ are
POMDPs for dialog and knowledge management respectively.

The algorithm starts by initializing the two belief distri-
butions uniformly. J, which counts the number of EFs, is
initialized to 0. If the marginal probability over $% (or 37) of
knowledge belief b is higher than threshold 75, or the number
of EFs is higher than A, we add a new entity into the KB. If
the entropy of dialog belief is higher than h, then the agent
asks for rewording the original service request. Otherwise, we
use the dialog POMDP to maintain the dialog flow. Finally,
the knowledge belief is only updated by confirming questions,
which are able to invalidate agent hypothesis of unknown
entities. The algorithm returns the request and the updated
knowledge base.

When add a new entity, the agent explicitly asks the users
to help specify the name of the unknown item (or person). The
KB is updated along with the lexicon for the semantic parser.
The index for the unknown item or person is associated with
the newly added entry. With the new knowledge added to KB,
model has to be adjusted in size so that the dialog can be
continued properly, and the belief b is replaced with b™ which
provides a reinitialization to continue the conversation.

E. An Illustrative Example

Table || is an illustrative example of one of the trials in
the human participant experiment. The semantic parser failed
to correctly parse the request, because it does not know the
meaning of get. As a result, the dialog agent made a random
guess that it is “Alice requesting hamburger”. The robot
asks again for clarification what it should deliver. The user
responds “coffee”, making the robot confused between coffee
and hamburger. The robot asked a confirmation question about
“hamburger”, and received a negative response. Although the
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TABLE I
AN EXAMPLE DIALOG FROM A HUMAN PARTICIPANT.
[ Robot | Human |
How can I help you? Get me coffee
What item should I bring? Coffee
Do you want me to deliver N
hamburger? °
Who should I bring the item to? Nate
Is this delivery for ellen? No
It seems I do not know the person
you are talking about. Please Nate
write their name so I can learn it.
Who should I bring the item to? Nate
Is this delivery for Nate? Yes
What item should I bring? Coffee

Execute: Robot brings coffee for Nate and the dialog is over. ]

user was explicitly guided to select the recipient among the
people, this participant used the pronoun “me”, an unknown
word to the robot. When the robot heard “Nate” the first time,
it could not understand, and made a random guess that it is
“Ellen”. As a result, the agent confirmed “Ellen” afterwards,
and was invalidated by the user. So it kept asking for clarifi-
cations until it adds the person’s name to its knowledge and
became confident about the request.

IV. EXPERIMENTS

For the experiments, we used a Segway-based robot plat-
form, pictured in Figure[T} which is equipped with a screen that
displays questions and responses to the user. For the purposes
of our experiments, the participants used a wireless keyboard
and the mounted screen to communicate with the robot. The
dialog agent was implemented using Robot Operating System
(ROS) [20]. In simulation experiments, we model the uncer-
tainty in natural language understanding by adding noise to the
observations. For instance, the agent can correctly recognize
“coffee” in 0.8 probability, and this probability decreases given
more items in the KB. When the user verbalizes the entire
request, the agent receives a sequence of three (unreliable)
observations on fask, item and recipient in a row. The costs
of confirming questions is R® = —1, and the cost of wh-
questions is R = —1.5. In each trial, a request is randomly
selected with 50% chance of including an unknown item or
person. POMDPs are solved using an off-the-shelf system [10].

Experiments were designed to evaluate the following hy-
potheses: 1) In comparison to a baseline that augments the
KB after the number of turns becomes higher than a threshold,
our algorithm reduces the QA cost while maintaining similar
success rates. 2) A dialog agent that learns from human-robot
conversations creates a better user experience, in comparison
to the ones that use static KBs.

Evaluation metrics used in the experiments consist of: QA
Cost, the total cost of QA actions; Overall Success, where a
trial is successful, if the service request is correctly identified
and (if needed) the KB is corrected augmented; and Dialog
Reward, where both QA cost and bonus/penalty are consid-
ered. Focusing on the knowledge augmentation accuracy, we
also use F1 score as a harmonic average of the precision and
recall in knowledge management.

A. Experiments in Simulation

Figure [5] shows the results of comparing our dual-track
POMDP-based agent with a baseline that augments its KB,
if human intention cannot be identified in N = 5 turns
(Hypothesis-1). As the domain size increases, our dialog
agent performs consistently better than the baseline in Overall
Success. From Figure [5}Left, we see our agent asks more
questions in larger domains, until it finds the domain (with
KB Size 37) is too large and it is not worth more questions.
From Figure [5}Middle, we see both methods produce lower
dialog reward given larger domains, because it is harder to get
confident that new knowledge is needed to achieve the dialog
goal in larger domains.

We further evaluated the effect of the EF threshold A to the
system performance. Intuitively, a higher EF threshold makes
it more difficult to introduce new entities to the knowledge
base, resulting in more conservative behaviors. Figure [6] shows
the results, where we can see a small value of A encourages
the agent to add new knowledge, even if it is not very confident
about the necessity of doing that. Results of such behaviors
are reflected in the ““F1 score” subfigure” on the right.
Given a higher A threshold, the agent is more conservative
in knowledge augmentation, and has higher F1 scores. The
downside of a higher A is that the agent failed in more cases,
where knowledge augmentation is needed but did not occur.
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Fig. 7. Left: Segway RMP110 used in the experiment. Right: List of the items
and recipients that robot participants used to ask for delivery. Two items and
two people were unknown to the robot.

B. Experiments with Human Participants

Twelve students of ages 19-30 volunteered to participate
in an experiment where they could ask the robot to conduct
delivery tasks. Two of each of the the item and recipient lists
were unknown to the robot, resulting in only about 49% (i.e.,
1-— % X %) of the service requests that can be identified without
requiring knowledge augmentation. The participants were not
aware of this setting, and arbitrarily chose any combination of
an item and a recipient to form a delivery task. Each participant
conducted the experiment in two trials. In one, the robot used
the dual-track POMDPs, and in the other, the robot used a
baseline dialog agent with a static KB. The delivery items
and recipients were shown in Figure [7]

At the end of the experiment, participants were required
to fill out a survey form indicating their qualitative opinion
including the following items. The response choices were O
(Strongly disagree), 1 (Somewhat disagree), 2 (Neutral), 3
(Somewhat agree), and 4 (Strongly agree).

1) How easy the tasks were defined;

2) How well the robot understood the human request;

3) Whether robot frustrated the participant or not; and

4) Participant’s willingness to use the robot in the future.

Table [I] shows the average scores. We see that, with p-
value threshold 0.1, our dual-track POMDP approach makes
significant improvements in response for Q3 (“robot frustrated

TABLE II
RESULTS OF THE HUMAN PARTICIPANT EXPERIMENT.
Ql Q2 Q3 4
Average score using dual-track POMDP | 342 250 150 2.50
Average score of baseline 333 183 217 1.75
| would use the ours I Strongly Disagree
robot to get items . EEm Disagree
for myself or other baseline = Neutral
Agree
The robot ours Strongly Agree
frustrated me paseline
The robot ours
understood me baseline
The tasks were I ours
easy to understand ] baseline
tI] Z‘D 4‘0 6‘0 ﬂb l[ll(]

Participants (%)

Fig. 8. Results of survey from participants. The survey consisted of four
statements with Likert-scale responses.

me”) and Q4 (“Will use the robot”). There is no significance
difference observed in responses to the other two questions.
Figure [§] presents more details from the survey papers.

V. CONCLUSIONS AND FUTURE WORK

We introduced a dialog agent that simultaneously supports
human intention identification, and knowledge augmentation
on an as-needed basis. Experiments show that our dual-track
POMDP controller enables the agent to do dialog and knowl-
edge management. In comparison to a baseline that augments
its knowledge base after a fixed number of turns, our dialog
agent consistently produces higher dialog overall success.
Experiments with human participants show that humans felt
less frustrated and more willing to use our agent. This dialog
agent can be particularly useful to robot platforms that work
in open domains, where pre-programing a knowledge base is
impractical. This includes places like offices, factories, and
hospitals where the space of items and people may change as
a function of time.

In the future, we plan to enable the agent to augment
knowledge bases with more complex structures, e.g., to model
subclasses of ifem. Such structures make knowledge man-
agement more difficult. Another direction is to enable the



agent to learn and merge synonyms via human-robot dialog,
and remove incorrect (or unnecessary) concepts on an as-
needed basis. In this process, the agent may want to actively
introduce “redundant” dialog turns for knowledge acquisition
and clarification purposes. Finally, we plan to experiment
with more human participants and in environments with more
dynamics.
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