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Abstract

Sequential decision-making (SDM) plays a key role in
intelligent robotics, and can be realized in very differ-
ent ways, such as supervised learning, automated rea-
soning, and probabilistic planning. The three families
of methods follow different assumptions and have dif-
ferent (dis)advantages. In this work, we aim at a robot
SDM framework that exploits the complementary fea-
tures of learning, reasoning, and planning. We use long
short-term memory (LSTM) for passive state estimation
with streaming sensor data, and commonsense reason-
ing and probabilistic planning (CORPP) for active in-
formation collection and task accomplishment. In ex-
periments, a mobile robot is tasked with estimating hu-
man intentions using human motion trajectories, declar-
ative contextual knowledge, and human-robot interac-
tion (dialog-based and motion-based). Results suggest
that our framework performs better than its “no learn-
ing” and “no reasoning” versions in a real-world office
environment.

1 Introduction

Mobile robots have been able to operate in everyday en-
vironments over extended periods of time, and travel long
distances that have been impossible before, while providing
services, such as escorting, guidance, and delivery [Hawes
et al., 2017, |Veloso, 2018, [Khandelwal et al.l 2017]]. Se-
quential decision-making (SDM) plays a key role toward
robot long-term autonomy, because real-world domains are
stochastic, and a robot must repeatedly estimate the current
state and decide what to do next.

We develop a robot SDM framework in this work, where
robots are able to simultaneously learn from past experi-
ences, reason with declarative contextual knowledge, and
plan to achieve long-term goals under uncertainty.

We apply our general-purpose framework to the prob-
lem of human intention estimation using a mobile robot,
as shown in Figure [I] The robot can observe human mo-
tion trajectories using streaming sensor data, has contextual
knowledge (e.g., visitors tend to need guidance help), and
is equipped with dialog-based and motion-based interaction
capabilities. The goal is to identify human intention (e.g.,
human intending to interact or not) as accurate and early as
possible. Note that human intention may change over time,
and the robot wants to change its estimation accordingly.

Figure 1: Robot estimating human intention, e.g., human in-
tending to interact or not, by analyzing human trajectories,
reasoning with contextual knowledge (such as location and
time), and active human-robot interaction.

There are at least three artificial intelligence (AI)
paradigms, namely supervised learning, automated reason-
ing, and probabilistic planning, that can be used for SDM,
but none of them completely meets the requirements in
the context of robotics. I) A robot can learn to make de-
cisions from previous experiences using supervised learn-
ing, e.g., learning from pairs of human trajectory and inten-
tion to decide whether to offer help or not. However, su-
pervised learning can be biased; and the robot cannot make
use of contextual knowledge or be active in this process. II)
A robot can reason with rule-based contextual knowledge
for decision-making, e.g., people show up in open-house
events need guidance help, and students leaving classrooms
do not. However, such knowledge can hardly be compre-
hensive; and a robot cannot actively seek information to re-
cover from inaccurate or incomplete knowledge, or lever-
age previous experiences that is widely available in the big-
data age. III) A robot can plan actions for active informa-
tion collection and goal achievement, e.g., using decision-
theoretic frameworks such as Markov decision processes
(MDPs) [Puterman) 2014] and partially observable MDPs
(POMDPs) [Kaelbling et al., [1998]]. However, (PO)MDPs
are not good at incorporating declarative knowledge.

In this work, we develop a robot SDM framework that
exploits the complementary features of learning, reasoning,
and planning in Al Specifically, we use long short-term
memory (LSTM) [Hochreiter and Schmidhuber, [1997] to
learn a classifier for passive perception using streaming sen-
sor data, and use commonsense reasoning and probabilistic



planning (CORPP) [Zhang and Stone, 2015]] for active per-
ception and task completions using contextual knowledge
and human-robot interaction. We experimentally evaluate
our approach using the human intention estimation problem.
Results suggest that, in comparison to no-reasoning and no-
learning baselines, integrating LSTM and CORPP improves
accuracy and efficiency.

2 Background

We briefly overview long short-term memory (LSTM) neu-
ral network [Hochreiter and Schmidhuber, [1997] for super-
vised learning, and commonsense reasoning and probabilis-
tic planning (CORPP) [Zhang and Stone} 2015].

21 LSTM

Recurrent neural networks (RNNSs) are a kind of neural net-
works that use their internal state (memory) to process se-
quences of inputs. LSTM [Hochreiter and Schmidhuber;,
1997 network, is a type of RNN that includes LSTM units.
Each memory unit in the LSTM hidden layer has three gates
for maintaining the unit state: input gate defines what infor-
mation is added to the memory unit; output gate specifies
what information is used as output; and forget gate defines
what information can be removed. LSTMs use memory cells
to resolve the problem of vanishing gradients, and is widely
used in problems that require the use of long-term contextual
information, e.g., speech recognition [Graves et al.l 2013
and caption generation [Vinyals et al.,2015]]. We use LSTM-
based supervised learning for passive state estimation with
streaming sensor data in this work.

2.2 CORPP

Commonsense reasoning and probabilistic planning
(CORPP) is an algorithm that integrates automated rea-
soning and planning under uncertainty [Zhang and Stone
[2015]. The reasoning component represents and reasons
with declarative contextual knowledge (both logical and
probabilistic). The planning component’s state space is used
for computing an action policy that suggests actions toward
achieving long-term goals. CORPP uses P-log [Baral et al.,
2009, Balai and Gelfond, 2017] for knowledge represen-
tation and reasoning, and partially observable Markov
decision processes (POMDPs) [Kaelbling et al., |1998] for
probabilistic planning. In CORPP, the reasoning results are
used to specify the state space and initial belief state for
probabilistic planning.

P-log: Answer Set Prolog (ASP) is a logic programming
paradigm that is strong in non-monotonic reasoning [Gel-
fond and Kahl| 2014} Lifschitzl 2016]]. An ASP program in-
cludes a set of rules, each in the form of:

lo <1y, -+, Iy, notly, -+, notl, g

where [’s are literals that represent whether a statement is
true or not, and symbol not is called default negation. The
right side of a rule is the body, and the left side is the head.
A rule reads the head is true if the body is true.

P-log extends ASP by allowing probabilistic rules for
quantitative reasoning. A P-log program consists of logical

and probabilistic part. The logical part inherits the syntax
and semantics of ASP. The probabilistic part contains pr-
atoms in the form of:

prr(a(t) = y|B) = v

where a(t) is a random variable, B is a set of literals and
v € [0, 1]. The pr-atom states that, if B holds and experiment
r is fixed, the probability of a(t) = y is v. Reasoning with
a P-log program produces a set of possible worlds, and a
distribution over the possible worlds.

There are representations for probabilistic inference that
build on first-order logic (FOL), such as Probabilistic Soft
Logic (PSL) [Bach et al. [2017] and Markov Logic Net-
work (MLN) [Richardson and Domingos, [2006]. P-log di-
rectly takes probabilistic, declarative knowledge as the in-
put, whereas PSL and MLN use data to learn weights of FOL
rules. Informally, P-log is good at incorporating (declara-
tive) human knowledge, and PSL and MLN are strong in
learning from data for probabilistic inference.

POMDPs: Markov decision processes (MDPs) can be
used for sequential decision-making under full observabil-
ity. Partially observable MDPs (POMDPs) [Kaelbling et al.|
1998]] generalize MDPs by assuming partial observability of
the current state. A POMDP model is represented as a tu-
ple (S, A, T, R, Z,O,~) where S is the state-space, A is the
action set, 1" is the state-transition function, R is the reward
function, O is the observation function, Z is the observa-
tion set and y is discount factor that determines the planning
horizon.

An agent maintains a belief state distribution b with ob-
servations (z € Z) using the Bayes update rule:

O(¢',a,z2) ZSES T(s,a,s)b(s)
pr(zla,b)

b (s") =

where s is the state, a is the action, pr(z|a, b) is a normalizer,
and z is an observation. Solving a POMDP produces a policy
that maps the current belief state distribution to an action
toward maximizing long-term utilities.

3 Framework

We develop a robot SDM framework that tightly couples
the LSTM-based supervised learning, and CORPP-based
reasoning and planning. Streaming sensor data, e.g., from
RGB-D sensors, is fed into a LSTM-based classifier. The
classifier’s output is provided to the reasoner. The reasoner
reasons with declarative contextual knowledge, the classi-
fier’s output, and the classifier’s accuracies. The reasoner
produces a prior belief distribution over all possible states
for the probabilistic planner. The planner suggests actions to
enable the robot to actively interact with people, and deter-
mines when and what (estimated intention) to report. Fig-
ure2lis an overview of our robot SDM framework.

In the following subsections, we explain in detail how
each of these components are develped for the problem of
human intention estimation.



Supervised Learning Automated Reasoning

______________________________________

Streaming
Sensor
Data

Initial Belief Distribution

-
Probabilistic
> Planner

Figure 2: An overview of our robot SDM framework that
integrates supervised learning, automated reasoning, and
probabilistic planning.

3.1 Passive perception with streaming sensor data

We train a classifier to make passive intention estimations
using a dataset from the literature [Kato et al.,[2015]]. Since
the human trajectories are in the form of time sequence data,
we use LSTM to train a classifier for estimating human in-
tentions based on human motion trajectory. Next we present
some implementation details of our LSTM network.

Features of the input vectors include the x and y compo-
nents of human motion trajectories. The input vector length
is 60 including 30 pairs of x and y values. Our LSTM hid-
den layer includes 50 memory units. In order to output bi-
nary classification results, we use a dense layer with sigmoid
activation function in the output layer.

We use Adam [Kingma and Ba, [2014], a first-order gradi-
ent method, for optimization. The loss function was calcu-
lated using binary cross entropy. For regularization, we use
a dropout value of 0.2. The memory units and the hidden
states of the LSTM are initialized to zero. The epoch size
(number of passes over the entire dataset) is 300. The batch
size is 30. The data was split into sets for training (70%) and
testing (30%).

3.2 Reasoning with contextual knowledge

Domain knowledge provided by an expert human can help
the robot make better estimations. For instance, in the early
mornings of work days, people are less likely to be inter-
ested in interacting with the robot, in comparison to the uni-
versity open-house days. The main purpose of the reasoning
component is to incorporate such contextual knowledge into
passive state estimation with sensor readings.

Our reasoning program contains random variables
{location, time, ---, intention}, where the range of
each variable is defined as below:

Location : {classroom, library}
Time : {morning, afternoon, evening}

Identity : {student, professor,visitor}
Intention : {interested, notinterested}

We further include probabilistic rules into the reasoning
component. For instance, the following two rules state that
the probability of a visitor showing up in the afternoon is 0.7,
and the probability of a professor showing up in the library
(instead of other places) is 0.1, respectively.

pr(time = afternoon|identity = visitor) = 0.7.

pr(location = library|identity = professor) = 0.1.

It should be noted that fime and location are facts that
are fully observable to the robot, whereas human identity
is a hidden variable that must be estimated using observa-
tions. It is necessary to introduce identity, because there is
no direct causal relation between time (and location) and
human intention. Instead, time and location probabilistically
determine human identity, which then probabilistically de-
termines human intention, as shown in Figure [3]

For instance, when time is afternoon, location is library,
and the LSTM-based classifier outputs positive (meaning
human motion trajectory suggests the human is interested in
interaction), our probabilistic reasoner infers the following
distribution over possible identities.

[student = 0.16, visitor = 0.48, professor = 0.36]

where pr(identity = student) is small because 1) from
human knowledge, it is unlikely that students are interested
in interacting with the robot to get guidance service, and 2)
the LSTM-based classifier suggests the human is interested.
According to the above distribution (over identities), our
reasoner will generate the posterior distribution over human
intentions. Finally, this binary distribution (over whether hu-
man being interested in interaction or not) is provided to the
POMDP-based planner as informative priors.

3.3 Active Perception via POMDP-based HRI

Robots can take actions to reach out to people and actively
gather information. We use POMDPs to build probabilistic
controllers.

e 5 :5; x S U{term} is the factored state space. .S; in-
cludes two states representing human being interested to
interact with the robot or not. \S; includes two states rep-
resenting whether the robot has greeted the human or not.
term is the terminal state.

e A: A, UA, isthe set of actions. A, are perception actions
including turning to the human, greeting, and slightly
move toward the human. A, includes two actions for re-
porting the human being interested in interaction or not.

o Z : Z,U Z, U{not applicable} is the observation set
where Z,, contains human verbal feedback and Z,, is the
set of human physical reactions, such as turning toward
the robot.

The transition and reward functions are defined accord-
ingly. Reporting actions deterministically lead to the term
state. Reporting human intention yields a big bonus or a
big penalty, depending on the report being correct or not.
Each perception action a € A, has a small cost that is in the
form of a small negative reward. We use the discount factor
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Figure 3: The schematic representation of human intention
estimation problem based on the motion trajectory.

v = 0.99 to give the robot a relatively long planning hori-
zon. Using an off-the-shelf solver [Kurniawati et al., [2008]],
the robot can generate a behavioral policy that maps its be-
lief state to an action toward efficiently and accurately esti-
mating human intentions.

Recap: The robot’s LSTM-based classifier estimates hu-
man intention based on the human trajectories. Part of the
structured knowledge in the reasoning component is shown
in Figure |3| Facts of time and location are fully observable,
and can be used for reasoning about human identity, and
intention. Finally, the POMDP-based planner maintains an
initial belief distribution over all possible states, where the
reasoning results serve as informative prior beliefs.

The reasoning and planning components of CORPP are
constructed using human knowledge, and do not involve
learning. The reasoning component aims at correcting and
unbiasing outputs of the LSTM-based classifiers, and the
planning component is for active perception. Possible im-
provements are discussed in Section[6]

4 Experiments

We have conducted experiments in simulation to evaluate
the necessity of integrating supervised learning, automated
reasoning, and probabilistic planning. Baseline methods in-
clude the no-learning, and no-reasoning versions of the de-
veloped framework.

4.1 Human motion trajectory dataset

We use a publicly available dataset [Kato et al., 2015] to
train the LSTM-based classifier. Each sample in the dataset
includes a human motion trajectory in 2D space, and a label
of whether the human eventually interacts with the robot or
not. There are totally 2286 instances in the dataset, where
63 are positive instances (2.7%), and 2223 are negative
(97.3%). Each trajectory includes a sequence of data fields
with the sampling rate of 33 milliseconds. Each data field is
in the form of a vector: (;, y;, 2i, Vi, Om, 0r). Index i
denotes the timestep. x; and y; are the coordinates in mil-
limeter. z; is human height. v; is human linear velocity in
mm/s. 6, is the motion angle in radius. 6}, is the face
orientation in radius. They used multiple 3D range sensors

Table 1: Experiment results using five different approaches.

Method Accuracy | Precision Recall F1 score
Learning 0.61 0.56 0.30 0.39
Reasoning 0.60 0.54 0.62 0.58
Learning + Reasoning 0.58 0.51 0.72 0.60
CORRP 0.79 0.67 0.94 0.78
Learning + CORPP (ours) 0.83 0.74 0.86 0.80

mounted on ceilings to track human motion trajectories and
collect the dataset [Brscic et al.| 2013]].

While all data fields are potentially useful for training the
classifiers, we only use the features of x and y coordinates
because of the limitations of our robot’s perception capabil-
ities.

4.2 Simulation

We did pairwise comparisons of the following methods,
where each data point corresponds to 500 trials. Learn-
ing: the robot only uses its LSTM-based classifier to pas-
sively estimate human intention. Reasoning: the robot
uses only contextual knowledge to reason about human
intention. Learning+reasoning: the robot reasons about
the classifier’s output and contextual knowledge. Reason-
ing+planning (CORPP): the robot uses contextual knowl-
edge to compute priors for POMDP-based planning. Learn-
ing+CORPP (ours): the framework developed in this work.

In each simulation trial, we first randomly generate a sam-
ple of human identity. We then sample time, and location ac-
cording to our prior knowledge (in the form of distributions)
of how likely people show up in different times and location.
After that, we sample human intention according to time, lo-
cation, and identity. Finally, we sample a trajectory from the
dataset of human trajectories according to human intention.

Table |1| shows the results from simulation experiments,
where the developed framework that includes learning, rea-
soning, and planning produces the best overall performance
in F1 score — the F1 score is a harmonic average of the
precision and recall. Another observation is that our ap-
proach that combines supervised learning and CORPP re-
quires lower costs (13.1) in human-robot interaction, i.e.,
dialog-based and motion-based, in comparison to CORPP
(21.6). This suggests that our approach enables the robot to
take less perception actions (c.f., CORPP), while producing
higher F1 scores in human intention estimation.

5 Related Work

This work is related to existing research that incorporates
knowledge representation and reasoning (KRR) into sequen-
tial decision-making (SDM) in stochastic worlds. SDM can
be realized via either probabilistic planning (e.g., MDPs and
POMDPs [Kaelbling et al.,|1998])) or reinforcement learning
(RL) [Sutton et al., [1998]].

When world model is unavailable, one can use RL algo-
rithms to learn an action policy. Declarative action knowl-
edge has been used to help an agent to select only the rea-
sonable actions in RL exploration [Leonetti et al.l [2016].



Researchers have developed an algorithm called PEORL
that integrates hierarchical RL with task planning [Yang
et al.,|2018]]. In that work, RL (low-level) helps learn action
costs for the task planner, and the task planner guides RL
(high-level) to accomplish complex tasks. These works can-
not learn complex representations from previous annotated
decision-making experiences.

In case of world model being available, probabilistic plan-
ning methods can be used for computing action policies.
Contextual knowledge and logical reasoning have been used
to help better estimate the current world state in probabilis-
tic planning [Zhang et al., 2015]. Hybrid reasoning (both
logical and probabilistic) was used to guide probabilistic
planning by calculating a probability for each possible state,
producing an algorithm called CORPP [Zhang and Stone|
2015]. We use CORPP in this work. More recently, hy-
brid reasoning has been used to reason about world dynam-
ics [Zhang et al., [2017]], enabling planners to generate be-
haviors that are adaptive to dynamic world dynamics. |Srid-
haran et al.| [2015] developed a refinement-based architec-
ture, where declarative knowledge is used for task planning
and reasoning tasks, such as diagnosis and history explana-
tion, and high-level deterministic plans are implemented via
probabilistic planners. Very recently, researchers have used
human-provided declarative information to improve robot
probabilistic planning [Chitnis et al., 2018]. Learning was
not involved in these works.

To the best of our knowledge, this is the first work that
simultaneously supports supervised learning for passive per-
ception, automated reasoning with contextual knowledge,
and active information gathering via probabilistic planning.

6 Conclusions and Future Work

In this work, we develop a robot sequential decision-
making framework that integrates supervised learning for
passive state estimation, automated reasoning for incorpo-
rating declarative contextual knowledge, and probabilistic
planning for active perception and task completions. The
developed framework has been applied to a human inten-
tion estimation problem using a mobile robot. Results sug-
gest that the integration of supervised deep learning, logical-
probabilistic reasoning, and probabilistic planning enables
simultaneous passive and active state estimation, producing
the best performance in estimating human intentions.

In the future, we plan to implement this framework on a
mobile robot, where in particular, we will evaluate the real-
time performance of our system. There is the potential of
applying learning algorithms into our reasoning and plan-
ning components. For instance, model-based reinforcement
learning algorithms can be used to learn world dynamics
to update parameters of our planning component [Lu et al.|
2018|], and data mining algorithms [Han et al., 2011]] can be
used to learn probabilistic reasoning rules that can be for-
malized using P-log.
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