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Abstract

To operate in human-robot coexisting environments, intelli-
gent robots need to simultaneously reason with commonsense
knowledge and plan under uncertainty. Markov decision pro-
cesses (MDPs) and partially observable MDPs (POMDPS),
are good at planning under uncertainty toward maximizing
long-term rewards; P-LOG, a declarative programming lan-
guage under Answer Set semantics, is strong in common-
sense reasoning. In this paper, we present a novel algorithm
called iCORPP to dynamically reason about, and construct
(PO)MDPs using P-LOG. iCORPP successfully shields exoge-
nous domain attributes from (PO)MDPs, which limits com-
putational complexity and enables (PO)MDPs to adapt to the
value changes these attributes produce. We conduct a number
of experimental trials using two example problems in simu-
lation and demonstrate iCORPP on a real robot. Results show
significant improvements compared to competitive baselines.

1 Introduction

In order to be fully robust and responsive in real-world
environments, intelligent robots need a variety of simul-
taneous reasoning modalities that were separately devel-
oped in the past. In this paper, we focus on robots’ needs
for: i) commonsense reasoning (both logical and proba-
bilistic), ii) modeling quantitative uncertainties from action
outcomes and observations, and iii) planning under such
uncertainties toward maximizing long-term rewards. This
work uses (logical and probabilistic) commonsense reason-
ing techniques to dynamically construct probabilistic graph-
ical models (such as MDPs and POMDPs). While traditional
hand-coded models implicitly assume the acting agent is
the only one that can make changes to the world, we in-
troduce the interleaved commonsense reasoning and prob-
abilistic planning (ICORPP) algorithm to leverage dynami-
cally constructed (PO)MDPs to enable probabilistic planning
to be adaptive to exogenous world changes.

An MDP describes a probabilistic transition system un-
der the assumption of full observability. A POMDP extends
an MDP by assuming partial observability of underlying
states (Kaelbling, Littman, and Cassandra 1998), and hence
models the quantitative uncertainties from robot observa-
tions and action outcomes well. (PO)MDP algorithms, e.g.,
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value iteration (Sutton and Barto 1998), Monte Carlo tree
search (Kocsis and Szepesvari 2006) and SARSOP (Kurni-
awati, Hsu, and Lee 2008), help compute a policy that en-
ables planning toward maximizing long-term rewards. MDPS
and POMDPs have been used in a variety of robot applica-
tions (Khandelwal, Barrett, and Stone 2015; Young et al.
2013; Goldhoorn et al. 2014). However, (PO)MDP models
are not designed to reason about commonsense knowledge,
e.g., office doors are normally closed on holidays and typi-
cally have a strong assumption that the acting agent to be the
only one that can make changes to the world.

Existing work has investigated modeling exogenous
events, e.g., sunlight reduces success rate of a robot navigat-
ing through an area (due to the limitations of range-finder
sensors), within decision-theoretic models (Boutilier, Dean,
and Hanks 1999; Hoey et al. 2005). However, it is often dif-
ficult to predict how an exogenous change will affect the
system state, and what the distribution for the occurrence
of these exogenous events will be. Doing so also presents
a trade-off between model correctness and computational
tractability (as more domain variables are modeled). Al-
though it is possible to implement domain-specific planners
to efficiently handle the exogenous events, we argue that,
from a practical perspective, using commonsense reasoning
to shield exogenous domain attributes from (PO)MDPs is rel-
atively a much more easy-to-use approach than directly ma-
nipulating (PO)MDPs’ graphical representations.

Answer set programming (ASP) is a logic programming
language that is good at representing and reasoning with
logical commonsense knowledge (Baral 2003; Gelfond and
Kahl 2014) and has been used in robot applications (Chen et
al. 2012; Erdem, Patoglu, and Saribatur 2015). Probabilis-
tic extensions of ASP (Baral, Gelfond, and Rushton 2009,
Lee and Wang 2015) further enable reasoning with proba-
bilistic commonsense knowledge. As a result, ASP’s prob-
abilistic extensions can easily represent facts such as of-
fice doors are normally closed on holidays and probabilistic
models such as a robot has a lower success rate of navi-
gating through an area under sunlight. However, ASP and
its extensions do not support probabilistic planning toward
maximizing long-term rewards, e.g., techniques in the ASP
family are not suitable for the robot navigation problem
(§ 3.2), whereas (PO)MDPs are.

Contemporaneously with ASP, another family of pro-



gramming languages for probabilistic reasoning are
built under First-order logic (FOL) semantics, including
BLOG (Milch et al. 2007) and MLNs (Richardson and
Domingos 2006), but the FOL-based languages are not good
at representing or reasoning with commonsense knowledge
that is normally true but not always — more detailed compar-
isons by Baral, Gelfond, and Rushton (2009). As a result,
the FOL-based planning methods, such as (Srivastava et al.
2014), are not good for domains where the robot’s world
model (including its transition and reward systems) can be
frequently changed by external factors. Similar weakness is
shared by RDDL (Sanner 2010) that was developed for the
ICAPS International Probabilistic Planning Competition.

Different methods have been developed to combine com-
monsense reasoning and probabilistic planning. ASP and
POMDPs have been integrated for mobile robots, where the
reasoning results were used for generating prior beliefs for
POMDPs (Zhang, Sridharan, and Wyatt 2015). A switching
planner was used for deterministic and probabilistic plan-
ning while commonsense knowledge was used for diagnos-
tic tasks and generating explanations (Hanheide et al. 2015).
An action language was used to interact with and build
POMDPs (Sridharan and Gelfond 2016). In these algorithms,
bridging the gap between logical knowledge and probabilis-
tic beliefs requires considerable domain-dependent heuris-
tics. The use of P-LOG and POMDPs in this work enables
a principled algorithm that simultaneously allows (logical
and probabilistic) commonsense reasoning and probabilistic
planning. Learning and planning with commonsense knowl-
edge have been integrated in POMDPs (Juba 2016). That
work is restricted to goal-oriented planning and noise-free
POMDP observations, whereas iCORPP is not.

This work extends our previous research on a algorithm
called CORPP that unifies the strengths of POMDPs and P-
LOG by reasoning with P-LOG to specify the state space
of and compute informative priors for POMDP-based plan-
ning (Zhang and Stone 2015). However, a limitation of
CORPP is that the reward and transition systems have to be
hand-coded, making it incapable of adapting to exogenous
world changes. This paper addresses this limitation by intro-
ducing iCORPP that dynamically constructs (PO)MDPs using
P-LOG, and, for the first time, shields exogenous attributes
from (PO)MDPs while still enabling probabilistic planning to
adapt to the exogenous events. To evaluate iCORPP’s perfor-
mance, we have conducted a large number of trials in sim-
ulation and demonstrated its effectiveness on a real robot
using tasks in an office domain. We observed significant im-
provements in efficiency and accuracy compared to CORPP.

2 Background

This work builds on the existing techniques of P-LOG (Baral,
Gelfond, and Rushton 2009) and poMDPs (Kaelbling,
Littman, and Cassandra 1998). Since POMDPs are currently
more common in the literature, we do not discuss the gen-
eral POMDP framework, but focus on introducing P-LOG, the
other key technique this work builds on.

A P-LOG program typically includes both logical and
probabilistic rules, where the syntax and semantics of the
logical rules are inherited from ASP and the probabilistic rea-
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soning algorithm is based on a causal Bayesian network. An
ASP program consists of a set of logical rules, separated by
the symbol “<” (as shown below). The left side is called the
head and the right is called the body. A rule is read as “head
is true if body is true”, and specifically, a rule with an empty
body is referred to as a fact.

lpor ---or 1y < lg41,--,1ln, not Ipyq,---, not 1y.

The 1’s in ASP rules are literals, i.e., an expression of p or
—p, where p is an object constant or a variable. Symbol not
is a logical connective called default negation; not 1 is read
as “it is not believed that 1 is true”, which does not imply
1 is believed to be false, e.g., not prof(alice) means it is
unknown that alice is a professor. Using default negation,
ASP can represent default knowledge with exceptions.

Traditionally, ASP does not explicitly quantify degrees of
uncertainty: a literal is either true, false or unknown. P-LOG
is an extension to ASP that allows random functions, saying
that if B, a collection of extended literals (i.e., 1 or not 1)
holds, the value of a(t) is selected randomly from the set
{X:q(X)} Nrange(a), unless this value is fixed elsewhere,
where q is a predicate:

random(a(t): {X:q(X)}) « B.

Finally, a probability atom (or pr-atom) states that, if B
holds, the probability of a(t) =y is 6:

pr(a(t) =y|B) = 6,where, 6 € [0,1].

As a result, we can easily use P-LOG’s default negation
for logical commonsense reasoning such as office doors are
normally closed on holidays and use its probability atom for
probabilistic commonsense reasoning such as sunlight re-
duces the success rate of a robot navigating through an area.
Although P-LOG is good at commonsense reasoning, it does
not support planning under uncertainty toward maximizing
long-term rewards, which motivates the use of P-LOG for
dynamically constructing (PO)MDPs in this work.

3 Algorithm

A global state space S¢ can be specified using a set of en-
dogenous attributes V" (whose values can be changed by
robot actions) and a set of exogenous attributes V** (whose
values are changed by external factors).

G. _en en ex ex
STt x o x vy X vl X x v

where v¥"’s and v*"’s are endogenous and exogenous at-
tributes respectively: v € V" and v € V.

In principle, all of these domain attributes, both endoge-
nous and exogenous, can be modeled within a (PO)MDP.
However, in practice there are often too many exogenous
events to model all of them. Therefore, we take defaults
and facts as the input to reason about all domain attributes
in S¢, and then compute a much lower-dimensional state
space S for a (PO)MDP that focuses on a specific task,
S vi{" x---x vy In POMDPs, reasoning with probabilis-
tic commonsense rules associates a probability to each state
s € S and the probabilities together form a prior belief distri-
bution, so the POMDP-based planning starts with this infor-
mative prior when interacting with the environment (similar
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to CORPP (Zhang and Stone 2015)). We focus on construct-
ing other components of (PO)MDPs in this paper, especially
the state transition system 7 : Sx AxS — [0, 1] and reward
system R: Sx A—R (§ 3.1), which were both treated as
static by CORPP. We use example problems to present the
whole process of constructing (PO)MDPs (§ 3.2).

3.1 Algorithm Description

The main idea of iCORPP is to dynamically construct prob-
abilistic graphical models, e.g., (PO)MDPs, using a declara-
tive language that is strong in both logical and probabilistic
commonsense reasoning, e.g., P-LOG, and compute policies
that are adaptive to exogenous domain changes at runtime.
Figure 1 shows an overview, where this section focuses on
the commonsense reasoner and the action descriptor.

Commonsense reasoner (CR) CR includes both logical
and probabilistic reasoning rules in P-LOG, and models both
exogenous and endogenous domain attributes. Informally,
the aim of CR is to understand the parts of the world that
may have effects on the robot working on the current task.

Since real-world domains are dynamically changing all
the time and robots’ observations are partial and unreli-
able, robots frequently need to reason with incomplete do-
main knowledgel. ASP, on which P-LOG is based, well sup-
ports CR to take a set of defaults as input and smoothly re-
vise their values using observed “facts” when available, and
hence supports reasoning with incomplete domain knowl-
edge well. As an example, a robot using an MDP for indoor
navigation may have default knowledge: “area A is under
sunlight in the mornings”. A fact of “no sunlight is observed
in area A” can smoothly defeat the default. The set of pos-
sible worlds, W, is described by a set of n endogenous at-
tributes and their values.

To represent state transitions, we define two identical state
spaces using predicates curr_s and next_s in P-LOG:

curr,s(V1,~~~ 7’\/n) vy =Vq,-,vp = Vy.

next,S(Vh‘“ 7Vn) Fvll :Viv"' 7V;1 = Vq.

where curr_s and next_s specify the current and next states
and the v’s and V’s are endogenous attributes and their vari-
ables respectively.

If there is at least one endogenous attribute whose value is
not directly observable to the robot, the corresponding task
needs to be modeled as a POMDP (otherwise, an MDP).

"'When we solve an MDP problem, we simply assume the en-
dogenous attributes are fully observable. Robots face a partially
observable world in general.
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Algorithm 1 Algorithm iCORPP

Require: a set of defaults D; (PO)MDP and P-LOG solvers

1: collect facts F** for exogenous attributes 1V

2: repeat

3:  add F* and D into commonsense reasoner, CR

4:  calculate possible worlds W (each corresponds to a state s)
5: if 3v®" € V", whose value is not directly observable then
6: calculate a prior belief distribution b over W

7:  endif

8:  generate 7 and R by reasoning with W in AD

9:  compute policy 7 for the (PO)MDP specified by 7 and R
10:  while s is not rerm and F** is consistent with VW do
11: make an observation z about endogenous attributes V¢
12: update state s (or belief state b) using z
13: select action a with 7, execute a, and update F*
14:  end while

15: until s is term

Action descriptor (AD) We introduce sort action and ex-
plicitly list a set of i actions, A, as a set of objects in P-LOG.
Random function curr_a maps to one of the actions.

action ={ag,as, '-,a;i}. curr.a:action. random(curr._a).

The probabilistic state transitions, 7 (s,a,s’), can be de-
scribed using a set of pr-atoms in P-LOG. For instance, the
rule below states that the probability of action A changing
the value of attribute v from V; to V5 is 0.9.

pr(v' =Vs |v=V;, curr.a=A4) =0.9.

For MDPs, the values of endogenous attributes are fully
observable to the robot, whereas POMDPs need to model a
set of observations, Z, for estimating the underlying state.
We define obser as a sort, and curr_o as a random function
that maps to an observation object o.

obser=1{0¢,01,--,0j}. curr_o:obser. random(curr.o).

The observation function, O, defines the probability of
observing 0 given the current state being s and current ac-
tion being a. For instance, the rule below states that, if at-
tribute v’s current value is V, the probability of observing 0
after taking action 4 is 0.8.

pr(curr.o=0|currra=A, v=V)=0.8.

The reward function R maps a state-action pair to a nu-
meric value. For instance, this rule states that taking action
A given attribute v’s value being V yields a reward of 10.0.

reward(10.0,A,Vy,---,Vp) < curr_a=A, curr_s(Vy, -+, Vy).

Algorithm 1 specifies the iCORPP algorithm. The robot
first makes observations to collect facts F* for exogenous
attributes V**. In Steps 3-4, CR takes defaults D and facts
JF¢* as input and computes a set of possible worlds W, where
each w € W is described by a set of endogenous attributes
(and their values). In Steps 5-7, we compute a prior belief
b over VW for POMDPs. AD takes VV as input and computes
transition probabilities 7 and reward function R. The plan-
ner can compute a policy 7 : s — a using algorithms such
as SARSOP (for POMDPs) and value iteration or Monte Carlo
tree search (for MDPs). Finally, the action executor uses 7



for interacting with the environment by making observations
and taking actions, until a terminal state is reached or exoge-
nous facts lead to inconsistency. In case of inconsistency, we
return to Step 3 to recompute the possible worlds.

As an example of exogenous facts causing inconsistency,
consider a robot that plans to avoid the area under sun-
light (which blinds the sensors) when it was started. Should
clouds appear (an exogenous event) and the area previously
under sunlight no longer poses a problem to the robot, all
possible words are rendered inconsistent and the robot re-
activates CR (Step 3) to recompute the MDP state space (and
recompute the acting policy). Therefore, iCORPP enables the
robot’s behavior to adapt to the fact of a weather change.

3.2 Algorithm Instantiations on a Mobile Robot

In §3.1, we describe the transition and reward systems by
enumerating all the probabilities and rewards, which can be
very inefficient. In practice, we use domain-dependent at-
tributes for much more efficient representations. To demon-
strate such representations, we apply iCORPP to the follow-
ing two tasks. Both task domains have exogenous changes at
runtime. Figure 2(a) shows our simulation environment that
is constructed using GAZEBO (Koenig and Howard 2004)
and shared by the two tasks.

Task 1: shopping request identification

In this task, a robot attempts to identify a shopping request,
(item,room,person), via spoken dialog in the presence of
noisy speech recognition (Zhang and Stone 2015). We add
more details including distances between rooms and ontol-
ogy of items (Figure 2) and use this task to evaluate how
iCORPP enables the robot to adapt to exogenous domain
changes and fine-tune its behaviors. This domain has the fol-
lowing sorts, ®, and each sort has a set of objects.

time = {morning,noon,---}. room= {r0,rl,---,shop,---}.

person = {alice,bob,---}.  item = {regular,decaf,---}.

class = {item,drink,food,coffee,soda}.

We then define predicate set P:{request,subcls}, where
request(I,R,P) specifies a shopping request of delivering
item I to room R for person P, and subcls(Cy,Cp) claims
class C; to be a subclass of class C,. Figure 2(c) shows the
categorical tree that can be represented using rules:

subcls(Cy,C3) « subcls(Cq,Cs), subcls(Cq,Cs).
is(I,C1) + 1is(I,Cs), subcls(Cy,Cy).

A set of random functions describes the possible values
of random variables: curr_time, req-item(P), req-room(P),
and req_person. E.g., the two rules below state that if the
delivery is for person P, the value of req_item is randomly

selected from the range of item, unless fixed elsewhere:
random(req-item(P)). req-item:person — item.

We can then use a pr-atom to specify a probability. For in-
stance, the rule below states that the probability of delivering
coffee in the morning is 0.8.

pr(req.item(P) = coffee|curr_time = morning) = 0.8.
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Such random functions and pr-atoms allow us to repre-
sent and reason with probabilistic commonsense knowledge.
Finally, the current state (a shopping request) is specified
as follows: curr_s(I,R,P,term) < request(I,R,P), term.,
where predicate term identifies the terminal state. The ac-
tion set is explicitly defined as below.

action = {ask_i,ask._r,ask_p,conf_i0,conf_il--- conf_r0,

conf.rl,---,conf _p0,conf pl--- ,del_i0_r0_p0,---}

where, ask_’s are general questions (e.g., ask_r corresponds
to “which room to deliver?”), conf_’s are confirming ques-
tions (e.g., conf_r0 corresponds to “is this delivery to
room0?”), and del_’s are actions of deliveries.

For delivery actions, the reward function R maps a state-
action pair to a real number, and is defined as:

R(a® s) = R*, if a;®s;and a, ©s, and a, O s,
’ (1 —Ailai,si) - Ap(ap,sp) %,(a,,sr))R’, otherwise

where operator ® returns true if the action on the left
matches the state on the right in the given dimension (sub-
script). A in the range of (0, 1] measures the closeness be-
tween actual delivery (action) and underlying request (state)
in item, person, and room, respectively. R™ and R~ are the
reward and penalty that a robot can get in extreme cases
(completely correct or completely incorrect deliveries).

We compute the closeness of two items, A (I}, 1) by post-
processing the resulting answer set. Specifically, the heuris-
tic closeness function of two items is defined as:

max(dep(LCA,1Iy),dep(LCA, L)) — 1

A, L)=1—
(1) max(dep(root,h),dep(root.,12))

ey

where LCA is the lowest common ancestor of /; and I, and
dep(C,I) is the number of nodes (inclusive) between C and /.
Informally, the closeness of room R; to room R, is in-
versely proportional to the effort needed to recover from a
delivery to R; given the request being to R;. In Figure 2(a),
for instance, a wrong delivery to 70 given the request being
to r1 requires the robot to go back to shop, learn the delivery
room being r1, and then move to room r1. Therefore, the
asymmetric room closeness function is defined as below:

B dis(shop,Ry)
"~ 2-dis(shop,Ry) +dis(shop,Ry)

A(R1,Rs) @)

We simply set A, to 1. The costs of question-asking ac-
tions are stationary: R (a®¥, s)=-1, and R(a‘""/ ,s)=-2.

Task 2: robot navigation

In this task, the state is fully observable (MDP is used).
The robot navigates in a domain shown in Figure 2(a),
where moving people can (probabilistically) block its way—
Figure 2(b), and sunlight can (probabilistically) blind the
robot’s laser range-finder, making the robot unrecoverably
lost. Planning is done by mapping the domain to a grid,
which is defined using sorts row and col, and predicates
belowof and leftof. We then introduce predicates near_row
and near_col used for specifying if two grid cells are next to
each other, where R’s (C’s) are variables of row (column).
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Figure 2: (a) Simulation environment used in experiments, where the red arrows indicate the delivery routes from the shop
to individual rooms; (b) A human walker blocking the way of the robot; and (c) An ontology of available items used in the

“shopping” task (Task 1).

near_row(RWy,RWy) < belowof (RWy,RWs).
near_row(RWy,RWy) < near_row(RW,RW1 ).
near_col(CLy,CLy) + leftof(CL1,CLy).
near_col(CLy,CLy) + near_col(CLy,CLy).

To model the nondeterministic action outcomes, we de-
fine random functions curr_row and next_row that map to
the current and next rows, and curr_col and next_col that
map to the current and next columns.

random(next_row : {R_:near row(R_,RW)}) + curr_row =RW.

random(next_col : {C_:near_col(C_,CL)}) + curr_col =CL.

We use predicates near_window and sunny to define the
cells that are near to window and the cells that are actually
under sunlight. The rule below is a default stating that: in
the mornings, a cell near window is believed to be under
sunlight, unless defeated elsewhere.

sunny(RW,CL) + near_window(RW,CL), not —sunny(RW,CL),

curr_time = morning.

While navigating in areas under sunlight, there is a large
probability of becoming lost (0.9), which deterministically
leads to the end of an episode.

pr(next_term = true | curr_row = RW, curr_col = CL,
sunny(RW,CL)) = 0.9.

pr(next_term = true | curr_term = true) = 1.0.

The robot can take actions to move to a grid cell next to its
current one: action = {left,right,up,down}. For instance,
given action up, the probability of successfully moving to the
above grid cell is 0.9, given no obstacle in the above cell.

pr(next,row = RWo \ curr_row = RWy, curr_col =CLj,
belowof (RW1,RW5), —sunny(RWo,CL;),
—blocked(RW,CLy), curr_a =up) = 0.9.

Finally, the current state is specified by endogenous at-
tributes curr_row, curr_col, and curr_term:

curr_state(RW,CL,TM) < curr_row = RW, curr_col = CL,

curr_term = TM.

The goal of visiting room (r0, c3) can be defined as below,
where an early termination has a penalty of —100.0.
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pr(next_term = true | curr_row = r0,curr_col = c3) = 1.0.
reward(50.0,A,10,c3,true) < curr_state(r0,c3,true).

reward(—100.0,A,RW,CL,true) + curr_state(RW,CL,true),
RW <> rO0.

reward(—100.0,A,RW,CL,true) + curr_state(RW,CL,true),
CL <> c3.

Informally, iCORPP decomposes a (PO)MDP problem into
two subproblems, commonsense reasoning and probabilistic
planning, that respectively focus on “curse of dimensional-
ity” and “curse of history” — elaborated in (Kurniawati et
al. 2010). Therefore, iCORPP significantly reduces the com-
plexity of (PO)MDP planning compared to its one-shot solu-
tion, while enabling robot behaviors to adapt to exogenous
changes. As an example on complexity, the MDP constructed
by iCORPP in Task 2 (thirty positions, five weather condi-
tions and three times) includes only 60 states, whereas the
traditional way of enumerating all combinations of attribute
values (Boutilier, Dean, and Hanks 1999), produces more
than 2769 states, which cannot be solved (accurately or ap-
proximately) in practice.

4 Experimental Results

iCORPP has been implemented both in simulation and on
real robots. Focusing on the robot behavior using iCORPP,
we evaluate two hypotheses that iCORPP enables the robot
to (I) adaptively produce behaviors to a fine-tuned level that
is impossible for handcoded (PO)MDP models; and (II) adapt
to exogenous domain changes at runtime, without modeling
these exogenous attributes in its (PO)MDPs. We take CORPP
as the baseline algorithm unless specified otherwise. Note
that CORPP is more competitive than standard (PO)MDP
methods, as it reasons about domain attributes to specify the
initial state set (Zhang and Stone 2015).

Experiments in simulation were conducted using
GAZEBO (Koenig and Howard 2004). We used a solver
introduced in (Zhu 2012) for P-LOG programs (except that
reasoning about reward was manually conducted), the APPL
solver for POMDPs (Kurniawati, Hsu, and Lee 2008), and
value iteration for MDPs (Sutton and Barto 1998).

Hypothesis-I (Task 1) We use Task 1 with four items,
three rooms and two persons for comparing iCORPP to
CORPP (the baseline). The hidden shopping request was ran-
domly selected in each trial. Speech recognition errors are
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Figure 3: iCORPP enables the robot to fine-tune its behav-
ior in delivering different items to different rooms. The x-
axis and y-axis correspond to the incorrect deliveries and
the number of mistakes (over 100k trials). For instance, rO
in the right bars corresponds to the numbers of deliveries to
r0 given rl or r2 being requested.
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Figure 4: A visualization of CORPP and iCORPP policies,
where the person wants to deliver to one of the three rooms.
Each point corresponds to a belief. Each color corresponds
to an action: white corresponds to the general question of
“which room to deliver”; the colors in the corners corre-
spond to delivery actions; and the remaining three colors
correspond to confirming questions.

modeled, e.g., 0.8 accuracy in recognizing answers of con-
firming questions and a lower accuracy for general questions
(depending on the number of that sort’s objects).

Figure 3 shows the numbers of mistakes made by the
robot. In the default and cautious versions of iCORPP, the
values of [RT,R™] are [20,—20] and [30, —30] respectively.
The first observation is that CORPP makes no difference in
either item (Left) or room (Right), because it does not rea-
son about the reward system—incorrect deliveries are not
differentiated and all receive the same penalty. In contrast,
both versions of iCORPP enable the robot to behave in such
a way that the robot makes the fewest mistakes in cookie
(Left) and room r2 (Right). Such behaviors match our ex-
pectations: cookie is “very different” from the other three
items and r2 has the greatest distance from the shop, so
the robot should make effort to avoid delivering cookie (or
delivering to r2) when that is not requested. The second
(side) observation from comparing the default and cautious
versions of iCORPP is that, to adjust the robot’s “cautious
level”, we can simply change the value of [R™,R™]. Without
1CORPP, to achieve such fine-tuned behaviors, there will be
600 parameters in the reward function need to be handcoded,
which is impossible from a practical point of view.

To better understand the robot’s behavior (specifically, the
Right of Figure 3), we manually remove the uncertainties in
item and person in the initial belief, and visualize which ac-
tion the POMDP policy suggests given different initial beliefs
in room. In the Right of Figure 4, we see the robot is rela-
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Figure 5: iCORPP performs increasingly better in accuracy
and overall reward in the shopping task when more items
are known to be unavailable: CORPP corresponds to the left
ends of the two curves (CORPP uses a static model so it has
to include all items).
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Figure 6: (Left) Average time (with standard deviations) con-
sumed in navigating between location pairs when a walker
moves near the door of room r1; (Right) iCORPP enables the
robot to adapt to exogenous domain changes (the walker’s
position). Results are processed in batches (each has 50 tri-
als, when available).

tively more cautious in delivering to r1 and r2 (the green
and yellow areas in the top and left corners are smaller than
the red one in the right). It is very difficult to achieve such
fine-tuned behaviors from hand-coded models.

Hypothesis-II (Task 1) Figure 5 shows the results of the
shopping task when exogenous changes are added: items
can be temporarily unavailable. iCORPP dynamically con-
structs POMDPs: when items are known to be unavailable,
states of these items being requested and actions of deliver-
ing these items are removed from the POMDP. For instance,
when three items are unavailable, the numbers of states and
actions are reduced from (37,50) to (18,29). As a result,
iCORPP performs increasingly better in both accuracy and
overall reward (y-axes in Figure 5) when more items are
known to be unavailable (x-axes in Figure 5). In contrast,
CORPP has to use a static POMDP that includes all items (as-
suming no item unavailable), because it cannot adapt to ex-
ogenous changes. So CORPP’s performance corresponds to
the left ends of the two curves. Results shown in Figure 5
support that iCORPP enables the robot to adapt to exogenous
domain changes, whereas CORPP does not.

Hypothesis-II (Task 2) We further evaluate Hypothesis-1I
using the navigation task: the testing environment and the
robot are shown in Figure 2(a) and 2(b). We limit the num-
ber of random walkers to be 1 and its speed to be one fifth
of the robot’s. A goal room is randomly selected from the
four flag rooms. Reasoning happens only after the current
episode is terminated (goal room is reached). The walker’s
position is the only exogenous domain change (by temporar-
ily setting the time to be “evening”). We cached policies for



both CORPP (4 policies) and iCORPP (56 policies).

Figure 6 (Left) shows the robot’s traveling time given
start-goal pairs: once the robot arrives at its current goal,
the next one is randomly selected. The walker moves slowly
near the door of room r1. Without adaptive planning devel-
oped in this work, the robot follows the “optimal” path and
keeps trying to bypass the walker for a fixed length of time.
If the low-level motion planner does not find a way to by-
pass the walker within the time, the robot will take the other
way to navigate to the other side of the walker and contin-
ues executing the “optimal” plan generated by the outdated
model. We can see when the robot navigates between locO
and /oc2, iCORPP reduces the traveling time from about 250
seconds to about 110 seconds, producing a significant im-
provement. We do not see a significant difference for posi-
tion pairs other than “0-1” and “0-2”, because the walking
human is constrained to be near the door of room r1.

Results over 8.5 hours of experiments are shown in Fig-
ure 6 (Right): 224 trials using iCORPP and 112 trials us-
ing CORPP. Without caching, we find the time consumed
by iCORPP (over 54 trials) is distributed over P-LOG rea-
soning (7, 28%), MDP planning (7,, <1%), and execution
(T, 72%). Compared to CORPP, iCORPP enables the robot
to spend much less time in execution (7;) in all phases. At
the beginning phase, iCORPP requires more reasoning time
for dynamically constructing MDPs, which together with the
less execution time makes the overall time comparable to
CORPP (left ends of Figure 6-Right). Eventually, the low
execution time (7,) dominates the long-term performance
(right ends of Figure 6-Right), supporting that iCORPP en-
ables the robot to adapt to exogenous domain changes,
whereas CORPP does not.

Hypothesis-II (Task 2 on a robot) Experiments on a real
robot (including demo videos) can be found in Appendix A
that is available in an extended version of this paper
(http://eecs.csuohio.edu/~szhang/corpp).

5 Conclusions

This paper introduces a novel algorithm called iCORPP that
uses commonsense reasoning to dynamically construct
(PO)MDPs for adaptive robot planning. We use declarative
language P-LOG, a probabilistic extension of answer set pro-
gramming, for reasoning with logical and probabilistic com-
monsense knowledge, and use probabilistic graphical mod-
els, such as (PO)MDPs, for probabilistic planning. This pa-
per, for the first time, enables robot behaviors to adapt to
exogenous domain changes without including these exoge-
nous attributes in probabilistic planning models. iCORPP has
been evaluated both in simulation and on a real robot. We
observed significant improvements comparing to competi-
tive baselines (including CORPP), based on experiments on
two tasks in an office environment.
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Appendix A

iCORPP has been implemented on a Segway-based robot.
The robot uses the RMP 110 base, Xtion sensor for RGB-D
sensing, and the Velodyne VLP-16 for navigation. A seman-
tic map was hand-coded to map each symbolic position into
a pair of x-y coordinates in the real-world environment.
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Figure 1: iCORPP enables the robot to select “Route 17, suc-
cessfully avoiding the “sunlight” area along “Route 2”.

Figure 1 shows the office environment where real-robot
experiments were conducted. It includes ten offices, two
meeting rooms, and three research labs. The occupancy-grid
map of the environment was generated using a simultaneous
localization and mapping (SLAM) algorithm. The “SUN”
area is an area that is subject to strong sunlight in the morn-
ings given the current weather being sunny. The default rea-
soning capability of P-LOG supports that a fact of “under
sunlight” (or not) can defeat the default belief about sun-
light. Such sunlight can blind the robot’s laser range-finder,
and makes the robot unrecoverably lost. Therefore, the robot
needs to reason about the knowledge of current time and
weather to dynamically construct its MDP-based probabilis-
tic transition system, including the success rate of navigating
through the “SUN” area given the current condition.

Figure 1 also shows two routes in a demonstration trial
where the robot needs to navigate from its start point (“S”
in the green box) to the goal (“G” in the red box). To test
the robot’s behavior adapting to sunlight change, we left the
robot two routes that lead to the goal. For instance, Route 1
is shorter, but it goes through the area that is currently under
sunlight. Figure 2 shows screenshots of two trials in which
the baseline (CORPP) and iCORPP were used respectively.
iCORPP enables the robot to select the safer route (Route
2), even though it is longer. CORPP cannot adapt to the ex-
ogenous change of current time being morning and current
weather being sunny, letting the robot still believe the shorter
path is safe. In experiments, we directly encode such exoge-
nous knowledge to the robot. !

'Demo videos of simulated and real-robot trials are available
at: http://eecs.csuohio.edu/~szhang/corpp

Figure 2: Screen shots of two illustrative trials: (a) Using
the baseline approach (CORPP), the robot chose Route 1 that
is dangerous but shorter, causing the robot to become unre-
coverably lost in the “sunny” area; (b) By reasoning about
current time (morning) and weather (sunny), iCORPP suc-
cessfully helps the robot take Route 2 to avoid being trapped
in the “sunlight” area, even though the route is longer.



