Mobile Robot Planning Using Action Language
BC with an Abstraction Hierarchy

Shiqi Zhang! ®), Fangkai Yang?, Piyush Khandelwal!, and Peter Stone!

! Department of Computer Science, The University of Texas at Austin,
2317 Speedway, Stop D9500, Austin, TX 78712, USA
{szhang,piyushk,pstone}@cs.utexas.edu
2 Schlumberger Software Technology, Schlumberger Ltd,

5599 San Felipe Rd, Houston, TX 77056, USA
fkyang@cs.utexas.edu

Abstract. Planning in real-world environments can be challenging for
intelligent robots due to incomplete domain knowledge that results from
unpredictable domain dynamism, and due to lack of global observability.
Action language BC can be used for planning by formalizing the pre-
conditions and (direct and indirect) effects of actions, and is especially
suited for planning in robotic domains by incorporating defaults with
the incomplete domain knowledge. However, planning with BC is very
computationally expensive, especially when action costs are considered.
We introduce algorithm PlanHG for formalizing BC domains at different
abstraction levels in order to trade optimality for significant efficiency
improvement when aiming to minimize overall plan cost. We observe
orders of magnitude improvement in efficiency compared to a standard
“flat” planning approach.

1 Introduction

To operate in real-world environments, intelligent robots need to represent and
reason with a large amount of domain knowledge about robot actions and envi-
ronments. However, domain knowledge given to the robot is usually incomplete
(due to unpredictable domain dynamism) and defeasible (i.e., usually true but
not always). From STRIPS [4] to PDDL [17], many action languages (and their
extensions) have been developed to support automated plan generation by for-
malizing action preconditions and effects. While some action languages support
reasoning about the knowledge not directly related to actions, e.g., PDDL has
semantics to reason with axioms [25], most action languages lack a strong capa-
bility of reasoning with incomplete knowledge in dynamic domains, making it
difficult to embrace rich domain knowledge into planning scenarios. Action lan-
guage BC can be used for planning with guaranteed soundness by formalizing
the preconditions and (direct and indirect) effects of actions [14]. BC inherits
the knowledge representation and reasoning (KRR) advantages from action lan-
guages B [9] and C+ [10], and is especially suited for planning in robotic domains.

Unfortunately, in robotic domains where action costs need to be consid-
ered, planning with action language BC is very computationally expensive.
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For instance, in the office domain presented in [13], generating the optimal plan
to visit three people in different rooms takes more than 5 min on a powerful desk-
top machine (details in Sect.5), where the optimal plan has about 30 actions.
Such long planning time prevents the robot from being deemed useful in real-
world environments.

Hierarchical planning has been studied for years and people have developed
many algorithms including Hierarchical Task Network (HTN) [3] and Hierarchi-
cal Planning in the Now (HPN) [12]. Different from existing work on hierarchical
planning that aims to reduce the amount of search with guaranteed optimality
(e.g., [16]), we trade optimality for significant improvements in efficiency (similar
to HPN). We adapt the idea of describing task domains at different abstraction
levels [6] and propose an algorithm to enable hierarchical planning with action
language BC in real-world robotic domains.

This algorithm has been fully implemented in simulation and on a physi-
cal robot. Experiments on a mail collection problem show 2 orders of magnitude
improvements of efficiency with a 11.25 % loss in optimality, compared to a base-
line algorithm that plans with a non-hierarchical domain description in BC [13].
To the best of our knowledge, this is the first work that combines the KRR
advantages of a modern action language and the efficiency of hierarchical plan-
ning to enable mobile robots to compute provably sound plans in real-world
environments.

2 Related Work

This work is closely related to research areas including action languages and
hierarchical planning. We select representative research on these topics.

Action Languages: The planning domain definition language (PDDL) has been
widely applied to planning problems [17]. One of the most appealing advan-
tages of (the official versions of) PDDL is its syntax, which despite being sim-
ple supports important features of STRIPS [4], ADL [20], and other features
such as conditional action effects (PDDL1.2) and numeric fluents (PDDL2.1).
Furthermore, advanced planning algorithms such as Fast-Foward [19] and Fast-
Downward [11] have been implemented in existing planning systems supporting
PDDL.

While PDDL is strong in efficient plan generation, the official versions of
PDDL do not focus on reasoning with default knowledge, which is important
for robots to plan with incomplete knowledge in dynamic environments. Action
language C+ supports the representation and reasoning with defaults [10], but
does not allow recursively defined fluents that are frequently needed in robotic
domains (action language B does), as will be shown in Sect.3. BC, an action
language recently developed based on answer set semantics [8], can be used to
compute provably sound plans while supporting representation of and reasoning
with defaults with exceptions at different levels [14].

Recently, a two-level architecture has been developed for KRR in robot-
ics [26], where the high level uses action language AL for symbolic planning and
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the low level uses probabilistic algorithms for modeling uncertainties. In that
work, each default is associated with a consistency-restoring rule for restoring
consistency in history. In contrast, we intentionally make our robots memoryless
to avoid reasoning about history, i.e., whenever robot observations have conflicts
with defaults, our robot starts over by replanning with defaults and the observed
“facts”.

Hierarchical Planning: In existing research on hierarchical planning, the hier-
archy is frequently constructed through setting up connections either between
actions or between states. For instance, macro-actions (also called complex or
composite actions) are described as a sequence of primitive actions and possibly
some imperative constructs, e.g., hierarchical task network [3], planning with
composite actions [1], planning with complex actions [18], ordered task decom-
position [2], and hierarchical planning in the now [12]. These macro-actions are
either directly expanded after a plan is generated, or expanded in the reasoning
process using a predefined structure. These macro-actions limit the flexibility of
reducing plan costs at a finer abstraction level.

Another way of constructing the hierarchy is to describe the domain at dif-
ferent abstraction levels through setting up connections between states, where
a state at a coarser (higher) level includes a set of states at a finer (lower)
level [6,23,24]. Planning in such systems happens in a top-down manner and
constraints extracted from coarser levels help improve the efficiency in comput-
ing plans at finer levels. This mechanism allows more flexibility in planning at
finer levels, compared to macro-based hierarchical planning algorithms. In this
paper, we introduce action costs to such abstraction-based hierarchical planning
algorithms and implement the algorithm using action language BC on a real
robot system.

3 Abstraction Hierarchy Formalization

A BC action description D denotes a transition system T'(D), which is a digraph
whose vertices are states, which is a set of atoms, and whose edges are actions.
A transition in T'(D) is of the form (s, a, s’), where a is an action constant, and
s and s’ are states before and after executing a. A path P(n) of length n in the
transition system is of the form:

<807 g, .-+ ySn—1,an—1, Sn>

where s; (0 < i < n) are states and a; (0 < i < n—1) are actions. We use Len(P)
to denote the length of a path. P?(i) denotes state s; and P?(4) denotes action a;.
We use f(D) to represent the set of fluents occurring in D, and a(D) to represent
the set of actions occurring in D. To define the notion of abstraction hierarchy,
we first define the cost function C' that maps a tuple (s, a) to an integer C(s,a)
that denotes the cost of executing action a at state s. Furthermore, cost(P(n))
is the cost of path P(n):

cost(P(n)) = Zo<icn C(si, a;) (1)
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Given an action description D and a cost function C, its abstraction hierarchy
H is a tuple (D, L): D is a list of action descriptions D1, Do, ..., D4 such that
f(D;) C f(Dy) for 1 <i < j <d, where Dy = D and d is the depth of H; and
L is the step bound estimation function.

L(a) = max (Len(ﬁ(s, s'))) (2)

(s,a,s’) € T(D;)

Given an action constant a € a(D;), £ maps a to an integer L(a) repre-
senting the minimum number of steps needed to ensure that the effect of a can
be optimally achieved using actions in a(D;4+1) as shown in Eq. 2, where £ is
independent of s and s’, and is precomputed to reduce the planning time!. P
represents the path of the plan that leads the transition from s to s’ with mini-
mum plan cost. If we use A(s) to represent the set of literals that specify state
s, ]5(5, s’) can be computed by:

P(s,s') = arg min (cost(P(n))) (3)
P(n) € T(Dit+1),n €N,
A(P°(0)) C A(s), A(P*(n)) C A(s")

Note that states s and s’ and action a are at level ¢ while path P is at level
i + 1. Intuitively, the abstraction hierarchy H contains a set of action descrip-
tions where each description formalizes the same dynamic domain at a different
granularity. The hierarchy is organized from the most coarse description D; to
the most concrete description Dy. Different from existing work on hierarchical
planning using macro actions, we use function £ to provide step bounds in the
search for plans at lower levels. This is an important criterion of our approach
as it provides flexibility in reducing overall plan costs in lower levels. As an
example, we next apply this hierarchy to a real-world robot planning problem
in BC.

Mail Collection Problem: A mobile robot

drops by offices at 2pm every day to col- Okl dl! !l\abl j | lLO3
lect outgoing mail from the residents. How- % T Ty o a6 | 1d3 3
ever, some people may not be in their offices ahL{ carol

R . 02 o4
at that time, so they can pass their outgo- ~ & a7 a“
ing mail to colleagues in other offices, and j L L
send this information to the robot. When the Lbob | cor | daniel
robot collects the mail, it should obtain it
while only visiting people as necessary. An Fig. 1. Example floor plan.
example floor plan is shown in Fig. 1. We will use meta-variables F, Eq, Fs, ...
to denote people (alice, bob, carol, daniel and erin), R, Ry, Ra,... to denote
rooms, and K, Ky, Ko, ... to denote doors. Specifically, o1, 02, 03, 04 are offices,

laby is a lab and cor is a room, where offices and labs are sub-sorts of room.

1 As a preprocessing step, computing £ does not affect the runtime efficiency, so we
leave the discussion of its complexity to future work.
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This example domain has been formulated at three levels of abstraction. The
fluents at the most abstract level primarily describe how mail is passed from one
person to another and if mail has been collected from each person. At the middle
level, we add fluents to describe the connections of rooms through doors, but still
disregard the details about the robot’s more refined position in a room and if
the doors are open or not. Finally, all domain details are added into the bottom
level. An action in the bottom level must be primitive (i.e., can be physically
executed by the robot) and currently this hierarchy is manually constructed.

Action Description Dy1: In Dy, we use passto(FE1, Es) to describe E;’s mail has
been passed to F5. The current locations of the robot and a person E are
described by loc=R and inside(E, R) respectively. Whether the robot has col-
lected mail from person F is represented by mailcollected(E). For instance, the
static law below states: if F4’s mail has been passed to Fo and that the robot
has collected mail from Fs, then F4’s mail has been collected as well using a
recursive definition of fluent mailcollected:

mailcollected(Ey) if mailcollected(Es), passto(E;, Es).

The two laws below state that person F cannot be in two different rooms at
the same time and that by default E’s location does not change over time (a
commonsense law of inertia), where inside is an inertial fluent.

~inside(E, R2) if inside(E,R1) (R; # R2).
inertial inside(E, R).

Action serve in D; states that serving person E in room R causes
mailcollected(E) to be true and the robot to be in R.

serve(E) causes mailcollected(FE).
serve(E) causes loc = R if inside(E,R).

Action Description Dy: Do inherits all fluents and corresponding non-action
rules from D; (actions of D, are discarded) and further adds fluents to describe
whether a room has a door using hasdoor(R, K) and whether two adjacent rooms
are connected through a door using acc(R;, K, Ry). The static laws below state
that if two rooms share the same door, then they are accessible to each other
through the door and that acc is symmetric.

acc(R1, K, Ry) if hasdoor(Ri1, K), hasdoor(Rz, K).
acc(R1, K, Ry) if acc(R2, K, R1).

We add defaults to reason with incomplete knowledge. For instance, rooms R
and Ry are not accessible through door K by default. This default value can be
reverted if there is evidence supporting the opposite.

default ~acc(Ry, K, R2).

Using the fluents in D, we can formalize action collectmail(E) that is similar to
action serve in Dy, and action cross(K) that allows the robot to cross door K
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to move from room R; to room Ry, if Rs is accessible from R; through door K.
There is a restriction on the executability of cross(K): the robot cannot cross a
door if that door is not accessible from the robot’s current location.

cross(K) causes loc = Ry if loc = R1, acc(R1, K, R2).
nonexecutable cross(K) if loc = R, ~ hasdoor(R, K).

Action Description D3: D3 inherits all fluents and corresponding non-action rules
from D5 (actions of Do are discarded) and further introduces fluents beside(K) to
describe whether the robot is beside door K, facing(K) to describe whether the
robot is beside and facing door K, and open(K) to describe if door K is open. We
use Monte Carlo Localization [5] to estimate the robot’s exact position (includ-
ing orientation) in physical environments. Using an occupancy-grid map with
manually added semantic labels, this exact position specifies the values of loc,
beside and facing and is also used for path planning. Using the fluents in D3, we
can formalize the primitive actions approach(K), opendoor(K), gothrough(K),
and collectmail(E). D3 corresponds to the “flat” action description presented
in previous work [13].

Action descriptions D1, Dy and D3 together determine D, the first element
of the abstraction hierarchy H. The other element is the step bound estimation
function £, which is partially decided by the cost function C, as presented Eq. 1.
The value of C(s,a) is assigned empirically based on robot experiments using
existing approach [13]. As an illustrative example, let us consider the calculation
of L(serve) using Egs.2 and 3. Since serve is an action in Dy, we first collect
all possible (s, serve, s’) € T(D;). The longest path in Dy that can be used to
achieve the same effect as a serve action in D; occurs when loc = 03 € s and
mailcollected(alice) € s'. The corresponding path P»(5) includes the following
actions in the order of execution:

cross(ds), cross(dg), cross(ds), cross(dy), collectmail (alice).

Consequently, L(serve) = 5. Similarly, L(cross) = 3.

4 Planning Using an Abstraction Hierarchy

In this section, we formally define two planning problems that aim to minimize
the plan length (Type-I) and plan cost (Type-II) respectively, where the first is
a special case of the second. Then we propose two algorithms to solve Type-II
problems using an abstraction hierarchy.

Type-I Problem: A Type-I planning problem aims at minimizing the plan length
(i.e., the number of actions), and is defined as a tuple (D, S,G). D is an action
description; S is a state constraint set including state constraints of the form
i:A;, where ¢ is an integer denoting the timestamp at which A; (a set of fluent
atoms) needs to be met; and G is a list of fluent atoms G;, which are goals. The
initial system state is specified as a part of the state constraint set as 0: Ag € S.
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Given (D, S, G), a satisfactory path is a path P(n) (defined in Sect. 3) of the
transition system T'(D) such that A; C s; for every i: A; C S, and G; € s,
for every G; € G. The satisfactory plan is the list (ag,- - ,a,—1) obtained from
P(n). A satisfactory plan is a shortest plan if the length of the satisfactory path
is minimal among all satisfactory paths. Algorithms that solve this problem do
not consider the overall cost of plans. To find the shortest-length plan in a Type-I
problem, we incrementally increase the plan length in solvers until a satisfactory
plan is found.

Type-II Problem: A Type-II problem aims at minimizing overall plan cost, and
can be defined as a tuple (D, S, G, C), where C is the cost function of actions.
Given an optimizing planning problem, an optimal path P(n) is a satisfactory
path of the satisfactory planning problem (D, S, G) such that the overall cost
of the path, cost(P(n)), is minimal among all satisfactory paths of (D, S, G).
Incrementally lengthening the plan length will not necessarily lead to the optimal
plan because a very long plan could have the lowest cost. Algorithms that solve
this problem compute plans toward minimizing the overall cost of the plan.

Without concurrent actions, a Type-I problem can be reduced to a Type-II
problem by using unit cost for any (s,a) in function C. Therefore, we will focus
on applying the abstraction hierarchy to Type-II problems.

4.1 PlanHG: The Proposed Planning Algorithm

Given a Type-II problem (D, S, G, C) and hierarchy H = (D, L), for a state P*()
in a path P(n), we define its shifted timestamp in Eq. 4. The shifted timestamp for
state P*?(1) is the timestamp when this state constraint needs to be achieved when
P(n) is further elaborated at the next level ¢ 4+ 1. State constraint sh(i) : P*(7)
is functionally a “bottleneck” that guides the solution path in the next level of
hierarchy by reducing the search space.

sh(i)= S L(PUG)) 1 (4)

a; €P(n), j<i

Furthermore, we impose the restriction that the only constraint contained in S
is the initial state that can be sensed by the robot. This restriction allows us to
easily project S and G on to each level of the hierarchy as S; and G;, respec-
tively. As a result, we obtain an optimizing planning problem at each abstraction
level: (D1,S1,G1,C), (D2, S2,G2,C), ..., (Dg,Sq4,Gq,C). For a Type-II prob-
lem (D;,S;,G;,C) at the ith level, let the path obtained from level i — 1 be
P;_1(n). We define the extended state constraint set at the ith level, S, in Eq. 5.
Therefore, a guided Type-II problem (D;, S, G;,C) is formed at the ith level
using (D, S;, G;,C) and state constraints extracted from level i — 1. We call
it a “guided”problem because the state constraints reduce the search space in
planning at the ith level.

Si=siu J  sh():Pi(): (5)
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Algorithm 1. PlanHG: Planning using H while applying £ globally
Input: Type-II problem (D, S,G,C), and abstraction hierarchy H = (D, L), where
D= (Dl,...,Dd), and Dg=D
create a list of problems (D;, S;, G;,C),1 <i < d using (D, S,G,C) and D
generate path P; for (D1,S1,G1,C)
for level i € {2,...,d} do
compute S; based on S; and P;_1, using Eq. (5)
generate path P; for (D;, S}, G;,C)
end for
return the plan obtained from Py

Solving Type-II problems directly using the optimization function of answer
set solvers may require prohibitively long time. Using an abstraction hierarchy,
we can obtain a list of guided Type-II problems. In practice, each level has action
noop(I) of zero cost representing no operation at timestamp I. The optimal path
generated at a higher level is passed down as “bottlenecks” such that the Type-II
problem at a lower level becomes a guided Type-II problem, until the bottom
level is reached. This approach guarantees the soundness of generated plans but
may lead to sub-optimal results. We present Algorithm 1 that solves Type-II
problems using an abstraction hierarchy H = (D, L). We call this algorithm
PlanHG to identify the use of the hierarchy and global minimization of plan
costs at each level.

In the mail collection domain, the robot can obtain the initial state constraint
from its internal knowledge base and sensor readings. For instance, initially the
robot can perceive that it is located in cor and beside d4. Such information is
used to automatically create a state constraint set .S:

{0:loc = cor, 0: ibeside(d;), 0:~facing(D)}.

Given a goal G of mailcollected(erin), at level 1 the projection S; becomes
{0:loc = cor} and the goal G; = G. The solver returns the optimal path:

(so={loc= cor, ~mailcollected (erin)}, ag ={serve(erin)},

s1={loc=lab;, mailcollected(erin)})

Now, we can compute the shifted timestamps for sy and s; given L(serve) = &
(Sect. 3) and we obtain the guided state constraint set S4:

0:loc = cor, 0 :~mailcollected(erin),
5:loc = laby, 5 : mailcollected (erin).

The guided Type-II problem (Ds, S}, G2, C) aims to find an optimal plan
such that at time 0 the robot is in cor, at time 5 the robot is in lab;
and Erin’s mail is collected, and the goal of Erin’s mail being collected is
achieved. Indeed, the optimal plan generated at this level consists of two actions:
cross(dy), collectmail(erin). Note that cross(dr) is selected because it has a
lower cost than cross(ds) and cross(dg). Using this plan, we can generate the
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Algorithm 2. PlanHL: Planning using H while applying £ locally

Input: Type-II problem (D,S,G,C), and abstraction hierarchy H = (D,L), where D =
(D1,...,Dg), and Dg = D

1: generate path P’ for (D;, S,G, C), where, in a top-down manner, i = 1 at the first call.

2: if P’ includes only primitive actions then

3: return P’

4: end if

5: generate a list of optimizing planning problems using P’ and (D, £): (Di,jx : Sk,Sk+1,C),
where k € {1,...,1 — 1}, and [ is the length of P’

6: for k€ {1,...,1—1} do

7: call Algorithm 2 to solve (D;t1,jk : Sk, Sk+1,C), and compute P},

8: end for

9: return P=(P;,...,P/_,)

next level of state constraints that require the robot to be in lab;. At level
3, the robot will execute approach(ds), open(ds), gothrough(ds) instead of
going through d; because this plan meets the state constraint requirements,
but is cheaper due to the robot’s current position (beside d4). This flexibility is
attributed to the strategy that instead of expanding macro-actions, we generate
plans for the same problem described at different abstraction levels and meet
the requirement of state constraints.

We will use PlanF'G to represent a special form of algorithm PlanHG that
does not pass state constraints to lower levels but simply plans at the bottom
level. PlanFG is a “flat” planning algorithm as presented in [13].

4.2 PlanHL: A Baseline Planning Algorithm

Alternatively, instead of satisfying all state constraints simultaneously, we can
treat each pair of consecutive state constraints as a specification of a sub-
problem. In this case, the step bound estimation function £ is used for find-
ing local optimal plans. Following this idea, a guided Type-II problem at the
ith level, (D;,S.,G;,C), can be split into a sequence of Type-II subprob-
lems (D, jk : Sk, Sk+1,C) for 0 < k < [ — 1, where S} is of the form:
{j01807...,j1281}, where j1 < ja < ... <.

The optimal paths of these problems are then joined to obtain the solution to
the original Type-II problem. This algorithm is presented in Algorithm 2, where
the implementation uses depth-first search to recursively call itself until reaching
the bottom level. We name this algorithm PlanHL to identify the use of H and
local minimization of plan costs using function £ at each level. In comparison to
PlanHL, algorithm PlanHG (proposed) does not decompose the original problem
to subproblems at each level. Instead, it generates paths for the original problem
to simultaneously satisfy all state constraints (by applying step bound estimation
function £ globally) at each level, toward minimizing the overall plan cost. Since
both the algorithms are sacrificing plan quality for efficiency in solving Type-II
problem, neither of the algorithms can guarantee the optimality (i.e. minimal
cost) of generated plans, but the provably sound semantics of action language
BC ensures the soundness of PlanHG (and PlanHL).
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5 Experiments

The abstraction hierarchy H (Sect. 3) and the planning algorithms (Sect. 4) have
been fully implemented in simulation and on a real robot using the mail collec-
tion problem domain. This section describes the results of experiments evalu-
ating the efficiency, solution quality, and scalability of the proposed algorithm.
Generally, a planning algorithm’s quality can be measured by optimality and effi-
ciency. Since we trade optimality for significant efficiency improvement in this
work, our hypotheses are: 1) PlanHG can solve planning problems that existing
“flat” algorithms cannot solve in reasonable time (PlanHG vs. PlanFG); and 2)
PlanHG can generate better-quality plans than the ones generated by existing
hierarchical algorithms (PlanHG vs. PlanHL).

5.1 Experiments in Simulation

The simulated domain used in experiments consists of 10 people, 20 rooms and
25 doors in an office environment, where mail needs to be collected from everyone
inside the building. No two people are in the same room. We vary how mail is
passed between people such that the number of people that need to be visited
to collect all the mail varies from 1 to 10. Initially, the robot is placed in the
corridor beside a randomly-selected door. Each data point is an average of 1000
trials. If the trials take more than 5h, we terminate the trials and take the
average over the available data. Action descriptions in BC are translated into
logic programming, and the algorithms are implemented natively in CLINGO
4.3 [7]. Unless otherwise stated, experiments were conducted on a 32-bit laptop
machine with 4 G memory and 2.0 GHz Dual Core processor.

PlanHG vs. PlanFG on Type-I Problems: We first compared PlanHG against
PlanFG on the efficiency of solving Type-I problems that aim at minimizing
the length of plans. The approach of applying PlanFG on Type-I problems was
presented in previous research [15]. The planning time is plotted in Fig. 2a. Not
surprisingly, PlanHG leads to significantly reduced planning time over PlanFG

z : "[O PlanFG_ % PlanHG | | : ' z : [® PlanFG _# PlanHL 4 PlanHG | :
=3 JOE U UUURE SUUURNE SUUURN: £ 1000 froooiee T T T ERRRNE
S 1000 1 o
2 151
2 : : : : : G100 i 1
100

g T T e S S 1
g 10 1 2 1 -
g g
El 1 1 § 0l 1
[N A~

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5

Number of people who need to be visited Number of people who need to be visited
(a) (b)

Fig. 2. (a) PlanHG vs. PlanFG in efficiency on the Type-I problems (i.e., minimiz-
ing plan length); and (b) PlanHG vs. PlanFG in efficiency on Type-1I problems (i.e.,
minimizing plan cost).
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by inserting state constraints (as “bottlenecks”) at lower levels. For instance,
creating a plan to visit six people (in six different rooms) takes PlanHG less
than 20 seconds, but requires more than 13 min for PlanF'G. Therefore, PlanHG
can significantly reduce the planning time in solving Type-I planning problems.
While PlanHG is not guaranteed to find the shortest length plan, both PlanHG
and PlanFG find the shortest length plan in our testing domain.

PlanHG vs. PlanFG on Type-II Problems: As shown in Fig. 1, multi-entrance
rooms make the shortest plan not necessarily the lowest-cost plan. We compare
PlanHG against PlanFG on Type-II problems that aim at minimizing overall
plan costs. Previous research has studied applying the PlanFG algorithm on
Type-1I problems [13], where the lowest-cost plan is found by searching among
all plans of length less than a user specified upper-bound. Instead, we use Eqgs. 2
and 3 of PlanHG to estimate this upper bound. The efficiency has been sig-
nificantly improved, because instead of directly solving the Type-II problem,
PlanHG solves a set of low-weight guided Type-II problems generated using the
abstraction hierarchy.

Figure 2b shows the significant improvement in efficiency against PlanFG.
To run larger numbers of trials, the experiments were conducted on a powerful
desktop machine with 15G memory and Intel Core i7 CPU at 3.40 GHz. For
instance, to create a plan visiting three people, PlanFG needs 5.98 min, while
PlanHG requires less than one second. When a small number of people need
to be visited, PlanHL took more time than PlanHG, because PlanHL calls the
ASP solver more frequently. Although PlanHG (the proposed approach) becomes
slower than PlanHL while planning for visiting more than three people, both
require significantly less time than PlanFG. PlanHL’s significant loss in plan
quality will be discussed.

Scalability of PlanHG on Type-II Problems: muple 1. Scalability of PlanHG on
We next evaluate the scalability of PlanHG  Type-IT problems with three people
to learn how the planning time changes need to be visited (in seconds).

given different problem domains. We keep

# of ppl. | Number of rooms
the number of people who need to be visited 10 115 20 |25
fixed at three, and then vary the total num- 5 1.41 | 2.86 | 5.65 | 10.28
ber of people in the building from 5 to 15, 10 1.83 4.18 | 7.69 | 11.56
rooms from 10 to 25, and doors from 13 to 15 - [6.20]9.93 | 14.58

27. Table 1 presents the planning time as the size of the domain increases.

Plan Quality: Figure 3a compares all approaches in plan quality (i.e. cost) in
the domain shown in Fig. 1. In this set of experiments, the trials (totally 1000)
are paired for different algorithms: the robot is initially placed in the corridor
beside a randomly-selected door; and n people (n varies from 2 to 4) are ran-
domly selected to need the robot’s visit. Realistic action costs are learned and
associated with the actions using algorithms presented in [13]. We observe that
algorithms solving a Type-I problem do not perform as well as those solving the
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Fig. 3. (a) Evaluation of plan quality in minimizing plan cost using different planning
algorithms (normalized, paired)—results of trials that would require longer then five
hours to complete were not included; and (b) Visual illustration of computed plans
(worst case) in a test case.

corresponding Type-II problem as they do not attempt to minimize overall plan
cost, but in turn have much faster execution times.

Figure 3a shows that PlanFG, the “flat” planning approach that computes
optimal plans, produces plans of the best quality in overall plan cost, but cannot
solve Type-1I problems with more than two people in reasonable time (as shown
in Fig. 2b). Comparing with PlanF'G on Type-II problem with two people, we find
PlanHG has only a 11.25 % loss in optimality. Compared to PlanHL, the baseline
hierarchical planning algorithm, PlanHG significantly improved the quality of
generated plans—when compared over 1000 trials using a student’s t-test with
p-value < 1070,

Figure 3b presents a test case of planning to visit two people, to demonstrate
why PlanHG can produce lower cost plans than PlanHL, where the robot is
initially beside d; at the corridor, and the goal is to collect mail from Alice and
Erin. We present the plans in the worst case. As expected, algorithm PlanFG
generated the optimal plan with the minimum cost (195). While planning with
PlanHG, the robot decided to visit room o; first (suboptimal) because the robot’s
finer position (e.g., beside(d7)) could not be represented at level 1—D; only
“knows” the robot is in the corridor. While planning with PlanHL, the robot
decided to go through dg because the subproblem is to find the optimal plan
going into lab;. As a result, PlanHG and PlanHL produce plans with costs of
205 and 345 respectively. Without minimizing plan cost globally, the robot could
not know going through ds could reduce the overall cost.

5.2 Illustrative Trials of PlanHG on a Robot

Algorithm PlanHG has been implemented on an autonomous Segway-based
robot—see Fig.4b. The robot uses a Hokuyo URG-04LX LIDAR and a Kinect
RGB-D camera for sensing and navigation. The robot moves in indoor environ-
ments at a maximum speed of 0.7m/s. Figure4a shows part of the real world
map generated using a simultaneous localization and mapping (SLAM) algo-
rithm. Since manipulation tasks are not the focus of this paper, similar to [22],
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Fig. 4. (a) Part of the inflated occupancy-grid map with a path (green bubbles) planned
for going through a door; and (b) The robot platform used in experiments.

the robot simply asks help from humans to open doors. The system architecture
has been implemented using Robot Operating System (ROS) [21].

As a trial, we initially placed the robot at a position labeled by the yellow dot
in Fig. 4a and asked the robot to collect mail from three people in laby, labs and
roomy respectively. Using PlanHG, the robot found the plan within 2 seconds.
In contrast, the robot needed more than 5 min to find the plan when PlanFG was
used (see Fig. 2b). The plan suggests following this path: start-——-lab,*—cor; —2
lab2*d—4>cor2d—5>room1*, where mail was collected at the rooms labeled with the
star sign. The red dot in Fig. 4a shows the position where the robot finished the
task. It should be noted that there are multiple plans of similar lengths leading
to the goal. For instance, the robot can cross ds after serving the first person
in laby. This plan is not preferred, because d3 is a narrow door and has a high
cost of navigating through it. A video of the robot’s performance can be viewed
online.?

6 Conclusions

In this paper, we present algorithm PlanHG for robotic task planning using
an abstraction hierarchy represented in action language BC. The hierarchy is
obtained by composing additional domain descriptions at coarser granularities
and plans computed at coarser levels are used to generate “bottlenecks” in the
form of search depth bounds at lower levels. This work combines the KRR advan-
tages of BC and the efficiency of hierarchical planning to enable mobile robots
to compute provably sound plans in real-world environments. The hierarchy and
algorithm have been fully implemented in simulation and on real robots. We
observed orders of magnitude improvements in efficiency with only a 11.25%
loss in optimality compared to a “flat” planning approach.
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