Towards an Architecture for Knowledge Representation
and Reasoning in Robotics

Shiqi Zhang‘, Mohan Sridharan?, Michael Gelfond?, and Jeremy Wyatt4

' Department of Computer Science, The University of Texas at Austin, USA
2 Department of Electrical and Computer Engineering, The University of Auckland, NZ
3 Department of Computer Science, Texas Tech University, USA
4 School of Computer Science, University of Birmingham, UK
szhang@cs.utexas.edu, m.sridharan@auckland.ac.nz,
michael.gelfond@ttu.edu, jlw@cs.bham.ac.uk

Abstract. This paper describes an architecture that combines the complemen-
tary strengths of probabilistic graphical models and declarative programming to
enable robots to represent and reason with qualitative and quantitative descrip-
tions of uncertainty and domain knowledge. An action language is used for the
architecture’s low-level (LL) and high-level (HL) system descriptions, and the HL
definition of recorded history is expanded to allow prioritized defaults. For any
given objective, tentative plans created in the HL using commonsense reasoning
are implemented in the LL using probabilistic algorithms, and the correspond-
ing observations are added to the HL history. Tight coupling between the levels
helps automate the selection of relevant variables and the generation of policies
in the LL for each HL action, and supports reasoning with violation of defaults,
noisy observations and unreliable actions in complex domains. The architecture
is evaluated in simulation and on robots moving objects in indoor domains.

1 Introduction

Robots deployed to collaborate with humans in homes, offices, and other domains,
have to represent knowledge and reason at both the sensorimotor level and the cog-
nitive/social level. This objective maps to the fundamental challenge of representing,
revising, and reasoning with qualitative and quantitative descriptions of uncertainty and
incomplete domain knowledge obtained from different sources. As a significant step
towards addressing this challenge, our architecture combines the knowledge represen-
tation and commonsense reasoning capabilities of declarative programming with the
uncertainty modeling capabilities of probabilistic graphical models. The architecture
has two tightly coupled levels with the following key features:

1. An action language is used for the system descriptions and the definition of
recorded history is expanded in the high-level (HL) to allow prioritized defaults.
2. For any given objective, tentative plans are created in the HL using common-
sense reasoning, and implemented in the low-level (LL) using probabilistic algo-
rithms, with the corresponding observations adding statements to the HL history.
3. Tight coupling between the system descriptions enables automatic selection of
relevant variables and the creation of action policies in the LL for any HL action.

M. Beetz et al. (Eds.): ICSR 2014, LNAI 8755, pp. 400-410, 2014.
(© Springer International Publishing Switzerland 2014

Towards an Architecture for Knowledge Representation and Reasoning in Robotics 401

In this paper, the HL and LL domain representations are translated into an Answer Set
Prolog (ASP) program and a partially observable Markov decision process (POMDP)
respectively. The novel contributions, e.g., histories with defaults and the tight coupling
between the levels, support reasoning with violation of defaults, noisy observations and
unreliable actions in large, complex domains. The architecture is evaluated in simula-
tion and on robots moving objects to specific places in an indoor domain.

2 Related Work

Probabilistic graphical models such as POMDPs have been used to plan sensing, nav-
igation and interaction for robots [13]. However, these formulations (by themselves)
make it difficult to perform commonsense reasoning. Research in classical planning
has provided many algorithms for knowledge representation and logical reasoning, but
these algorithms require prior knowledge about the domain, tasks and the set of ac-
tions. Many such algorithms also do not support merging of new, unreliable informa-
tion with the current beliefs in a knowledge base. ASP, a non-monotonic logic pro-
gramming paradigm, is well-suited for representing and reasoning with commonsense
knowledge [2]. It has been used to enable applications such as simulated robot house-
keepers and natural language human-robot interaction [4,5]. However, ASP does not
support probabilistic analysis, whereas a lot of information available to robots is repre-
sented probabilistically to quantitatively model the uncertainty in sensing and acting.

Researchers have designed architectures and developed algorithms that combine de-
terministic and probabilistic algorithms for task and motion planning on robots [8,9].
Examples of principled algorithms that combine logical and probabilistic reasoning in-
clude probabilistic first-order logic [7], Markov logic network [12], Bayesian logic [10],
and a probabilistic extension to ASP [3]. However, algorithms based on first-order
logic for probabilistically modeling uncertainty do not provide the desired expressive-
ness for commonsense reasoning, e.g., it is not always possible to express uncertainty
and degrees of belief quantitatively. Other algorithms based on logic programming that
support probabilistic reasoning do not support one or more of the desired capabilities
such as: reasoning as in causal Bayesian networks; incremental addition of (proba-
bilistic) information; and reasoning with large probabilistic components [3]. As a step
towards these capabilities, our novel architecture exploits the complementary strengths
of declarative programming and probabilistic graphical models, enabling robots to plan
actions in larger domains than was possible before.

3 KRR Architecture

The syntax, semantics and representation of the transition diagrams of our architecture’s
HL and LL domain representations are described in an action language AL [6]. AL has
a sorted signature containing three sorts: statics, fluents and actions. Statics are do-
main properties whose truth values cannot be changed by actions, fluents are properties
whose values are changed by actions, and actions are elementary actions that can be
executed in parallel. AL allows three types of statements:

402 S. Zhang et al.

a causes [, if po,...,pm (Causal law)

L if po,....pm (State constraint)

impossible ag,...,a; if po,...,pm (Executability condition)
where a is an action, [is a literal, [;; is an inertial fluent literal, and py,...,p, are

domain literals (any domain property or its negation). A collection of statements of AL
forms a system description. As an illustrative example used throughout this paper, we
consider a robot that moves objects of the sorts: textbook, printer and kitchenware, in
a domain with four places: of fice, main library, aux library, and kitchen.

3.1 HL Domain Representation

The HL domain representation consists of a system description Zy and histories with
defaults 7. 2y consists of a sorted signature (Xy) and axioms used to describe the
HL transition diagram 7y. Xy defines the names of objects, functions, and predicates
available for use in the HL. The sorts in our example are: place, thing, robot, and
object; object and robot are subsorts of thing. The sort ob ject has subsorts: textbook,
printer and kitchenware. The fluents of the domain are defined in terms of their ar-
guments: loc(thing, place) and in hand(robot,object). The first predicate describes a
thing’s location, and the second states that a robot is holding an object. These pred-
icates are inertial fluents subject to the laws of inertia. The domain has three actions:
move(robot, place), grasp(robot, ob ject), and putdown(robot,ob ject). The domain dy-
namics are defined using axioms that consist of causal laws such as:

move(Robot,Pl) causes loc(Robot,Pl) (1
grasp(Robot, Ob) causes in hand(Robot,OD)

state constraints:
loc(Ob,Pl) if loc(Robot,Pl), in hand(Robot,OD) 2)

=loc(Th,Ply) if loc(Th,PL), Pl; # Pl,

and executability conditions such as:

impossible move(Robot,Pl) if loc(Robot,Pl) 3)
impossible grasp(Robot,0b) if loc(Robot,Ply), loc(Ob,Ph),Pl; # Pl,

Histories with Defaults. A dynamic domain’s recorded history is usually a collec-
tion of records of the form obs(fluent,boolean,step), i.e., a specific fluent observed
to be true or false at a given step, and hpd(action,step), i.e., a specific action hap-
pened at a given step; we abbreviate obs(f,true,0) and obs(f, false,0) as init (f,true)
and init (f, false) respectively. We expand on this view by allowing histories to contain
(prioritized) defaults describing the values of fluents in their initial states. We provide
some illustrative examples below; see [6] for formal semantics of defaults.

Example 1 [Example of defaults]

Consider the following statements about the locations of textbooks in the initial state in
our illustrative example. Textbooks are typically in the main library. If a textbook is not
there, it is in the auxiliary library. If a textbook is checked out, it can be found in the
office. These defaults can be represented as:

Towards an Architecture for Knowledge Representation and Reasoning in Robotics 403

default(d (X)) default(dy(X))

head(d)(X),loc(X,main library)) head(dy(X),loc(X,aux library)) @)
body(d,(X),textbook(X)) body(d2(X),textbook(X))

default (ds(X) body(dy(X),—loc(X ,main library))

head (3EX§,loc(X ,office)) 3)

body(d3(X),textbook(X))
body(d3(X),—loc(X,main library)), body(d;(X),—loc(X,aux library))

where the literal in the “head” is true if all literals in the “body” are true. A history 7]
with the above statements entails: holds(loc(Tby,main library),0) for textbook Tb.
History % that adds observation: init(loc(Tby,main library), false) to ¢ renders
default d; inapplicable; it entails: holds(loc(Tby,aux library),0) based on d,. A his-
tory .74 that adds observation: init (loc(Thy,aux library), false) to % should entail:
holds(loc(Tbhy,of fice),0). History 7 that adds: obs(loc(Tby,main library), false, 1)
to 77 defeats default d; because if this default’s conclusion is true in the initial state,
it is also true at step 1 (by inertia), which contradicts our observation. Default d, will
conclude that this book is initially in the aux library; the inertia axiom will propagate
this information to entail: holds(loc(Tby,aux library),1).

The following terminology is used to formally define the entailment relation with
respect to a fixed Z. A set S of literals is closed under a default d if S contains the
head of d whenever it contains all literals from the body of d and does not contain
the literal contrary to d’s head. S is closed under a constraint of Py if S contains the
constraint’s head whenever it contains all literals from the constraint’s body. A set U of
literals is the closure of S if S C U, U is closed under constraints of Zy and defaults of
¢, and no proper subset of U satisfies these properties.

Definition 1. [Compatible initial states]
A state ¢ of Ty is compatible with description .# of the initial state of history 7 if:

1. o satisfies all observations of .#,

2. o contains the closure of the union of statics of Py and the set { f : init (f,true) €

FYU{~f 1 init(f, false) € I }.

Let .#; describe the initial state of history 7. In Example 1 above, states compatible
with %), %, %3 must contain {loc(Th,main library)}, {loc(Tb,aux library)}, and
{loc(Thy,office)} respectively. Since .# = .74, they have the same compatible states.

Definition 2. [Models]

A path P of 1y is a model of history s with description .# of its initial state if there is
a collection E of init statements such that:

1. If init(f,true) € E then —f is the head of a default of .#. Similarly, for init (f, false).

2. The initial state of P is compatible with the description: %z = .# UE.

3. Path P satisfies all observations in 7.

4. There is no collection E(of init statements which has less elements than E and
satisfies the conditions above.

We refer to E as an explanation of 7. Models of 771, 74, and 73 are paths consisting
of initial states compatible with .#}, .%,, and .#3; the corresponding explanations are
empty. For 773, the predicted and observed locations of Tb; are different. Adding E =
{init(loc(Tby,main library), false)} to .74 resolves this problem.

404 S. Zhang et al.

Definition 3. [Entailment and consistency]

e Let 57" be a history of length n, f be a fluent, and i € (0,n) be a step of .. A"
entails a statement Q = holds(f,i) (—holds(f,i)) if for every model P of #", fluent
literal f (—f) belongs to the ith state of P. The entailment is denoted by 7" |= Q.

e A history which has a model is said to be consistent.

It can be shown that histories from Example 1 are consistent and that our definition of
entailment captures the corresponding intuition.

Reasoning with HL Domain Representation. The HL domain representation is trans-
lated into a program I'1(Zp,.7¢’) in CR-Prolog that incorporates consistency restoring
rules in ASP [1,6]. ASP is based on stable model semantics and non-monotonic log-
ics; it can represent recursive definitions, defaults, causal relations, and language con-
structs that are difficult to express in classical logic formalisms [2]. The ground liter-
als in an answer set obtained by solving II represent beliefs of an agent associated
with IT; statements that hold in all such answer sets are program consequences. Algo-
rithms for computing the entailment relation of AL, and for planning and diagnostics,
reduce these tasks to computing answer sets of CR-Prolog programs. I consists of
causal laws of Py, inertia axioms, closed world assumption for defined fluents, reality
checks, records of observations, actions and defaults from .77, and special axioms for
init: holds(F,0) < init(F,true) and —~holds(F,0) < init(F, false). Every default of .&
is turned into an ASP rule and a consistency-restoring (CR) rule:

holds(p(X),0) < c¢(X),holds(b(X),0), not =holds(p(X),0) % ASPrule (6)
—holds(p(X),0) <= ¢(X), holds(b(X),0) % CR rule

The CR rule states that to restore the program’s consistency, one may assume that the
default’s conclusion is false. See [6] for more details about CR-rules and CR-Prolog.

Proposition 1. [Models and Answer Sets]
A path P = (0p,a0,01,...,0n—1,an) Of Tu is a model of history J€" iff there is an
answer set S of a program I1(Dy,) such that:

1. A fluent f € o; iff holds(f,i) € S,

2. A fluent literal —f € o; iff —holds(f,i) € S,

3. An action e € a; iff occurs(e,i) € S.

The proposition reduces: (a) computation of models of 7 to computing answer sets of
a CR-Prolog program; and (b) a planning task to computing answer sets of a program
obtained from IT(Zy,7¢) by adding the definition of a goal, a constraint stating that
the goal must be achieved, and a rule generating possible future actions.

3.2 LL Domain Representation

The LL system description &, has a sorted signature X and axioms that describe a tran-
sition diagram 77. Xy, includes sorts from Xy and sorts room and cell, which are sub-
sorts of place and whose elements satisfy static relation part of(cell,room). A static
neighbor(cell, cell) describes the relation between cells. Fluents of X, include those of

Towards an Architecture for Knowledge Representation and Reasoning in Robotics 405

Xy, a new inertial fluent: searched(cell,ob ject)—a cell was searched for an object—
and two defined fluents: found(object, place) and continue search(room,object). Ac-
tions of X, are viewed as HL actions represented at a higher resolution. The causal law:

move(Robot,Y) causes {loc(Robot,Z) : neighbor(Z,Y)} @)

where Y, Z are cells, may (for instance) be used to state that moving to a cell in the LL
can cause the robot to be in one of the neighboring cells. The LL includes a new action
search(cell,ob ject) that enables robots to search for objects in cells; the corresponding
causal laws and constraints are:

search(C,0b) causes searched(C,OD) (8)
found(Ob,C) if searched(C,0b), loc(Ob,C)

found(Ob,R) if part of (C,R), found(Ob,C)

continue search(R,0b) if ~found(Ob,R), part of (C,R), —searched(C,Ob)

The LL also has a defined fluent failure(ob ject,room) that holds iff the object under
consideration is not found in the room that the robot is searching:
failure(Ob,R) if loc(Robot,R),~continue search(R,0b),~found(Ob,R) (9)

In this action theory that describes 7, states are viewed as extensions of states of 7y by
physically possible fluents and statics defined in the language of the LL. Moreover, for
every HL state transition (0,a,0’) and every LL state s compatible with o, there is a
path in the LL from s to some state compatible with o’.

Unlike the HL, action effects and observations in the LL are only known with some
degree of probability. The function 7 : S x A x § — [0, 1] defines the state transition
probabilities in the LL. Similarly, if Z is the subset of fluents that are observable in
the LL, the observation function O : § X Z — [0, 1] defines the probability of observing
specific elements of Z in specific states. Functions 7 and O are computed using prior
knowledge, or by analyzing the effects of specific actions in specific states (Section 4.1).

Since states are partially observable in the LL, reasoning uses belief states, prob-
ability distributions over the set of states. Functions 7" and O describe a probabilistic
transition diagram over belief states. The initial belief state By is revised iteratively
using Bayesian updates: By (si41) o< O(Sy+1,0141) s T (S,ar41,514+1) - Bi(s). The LL
system description also includes a reward specification R : S x A X §' — R that encodes
the relative utility of specific actions in specific states. Planning in the LL involves com-
puting a policy that maximizes the cumulative reward over a planning horizon to map
belief states to actions: & : By — a,+1. We use a point-based approximate algorithm to
compute this policy [11]. Plan execution uses the policy to repeatedly choose an action
in the current belief state, and updates the belief state after executing that action and/or
receiving an observation. We call this algorithm “POMDP-1".

Unlike the HL, the LL history only stores observations and actions over one time
step. In this paper, the LL. domain representation is translated automatically into POMDP
models, i.e., data structures for &, ’s components such that existing solvers can be used
to obtain policies. One key consequence of the tight coupling between the LL and the
HL is that the relevant LL variables for any HL action are identified automatically,
significantly improving the efficiency of computing policies.

406 S. Zhang et al.

Algorithm 1. Control loop of the architecture

Input: The HL and LL domain representations, and the specific task for robot to perform.

H
ini

1 LL observations reported to HL history; HL initial state (s

2 Assign goal state sg) ., based on task.

3 Generate HL plan(s).
4 if multiple HL plans exist then
5 Send plans to the LL, select plan with lowest (expected) action cost and communicate

to the HL.
6 end

7 if HL plan exists then
8 for a! € HL plan: i € [1,n] do

,) communicated to LL.

9 Pass af‘l and relevant fluents to LL.
10 Determine initial belief state over the relevant LL variables.
11 Generate LL action policy.
12 while afl not completed and alH achievable do
13 Execute an action based on LL action policy.
14 Make an observation and update belief state.
15 end
16 LL observations and action outcomes add statements to HL history.
17 if results unexpected then Perform diagnostics in HL. ;
18 if HL plan invalid then Replan in the HL (line 3). ;
19 end
20 end

3.3 Control Loop

Algorithm 1 describes the architecture’s control loop. First, the LL observations ob-
tained by the robot in the current location add statements to the HL history, and the HL
initial state is communicated to the LL (line 1). The assigned task determines the HL.
goal state (line 2) and planning in the HL provides action sequence(s) with determin-
istic effects (line 3). If there are multiple HL plans, e.g., tentative plans generated for
the different possible locations of a desired object, these plans are communicated to the
LL; the plan with the least expected execution time is selected and communicated to the
HL (lines 4-6). If an HL plan exists, actions are communicated one at a time to the LL
along with the relevant fluents (line 9). For an HL action (alH), the relevant LL variables
are identified and the initial belief is set (line 10). An LL. POMDP policy is computed
(line 11) and used to execute actions and update the belief state until alH is achieved or
inferred to be unachievable (lines 12-15). The outcome of executing the LL policy, and
the observations, add to the HL history (line 16). If the results are unexpected, diagno-
sis is performed in the HL (line 17); we assume that the robot can identify unexpected
outcomes. If the HL plan is invalid, a new plan is generated (line 18); else, the next
action in the HL plan is executed.

4 Experimental Setup and Results

This section describes the experimental setup and results of evaluating the architecture.

Towards an Architecture for Knowledge Representation and Reasoning in Robotics 407

4.1 Experimental Setup

The architecture was evaluated in simulation and on physical robots. The simulator
uses models that represent objects using probabilistic functions of features extracted
from images, and models that reflect the robot’s motion. The robot also acquired data
(e.g., computational time of different algorithms) in an initial training phase to define
the probabilistic components of the LL domain representation [14].

In each trial, the goal was to move specific objects to specific places; the robot’s
location, target object, and locations of objects were chosen randomly. An action se-
quence extracted from an answer set of the ASP program provides an HL plan, e.g., the
plan to move textbook Tb| from the main library to the office could be: move(Robot,
main library), grasp(Robot,Tby), move(Robot,of fice), putdown(Robot,Thy). An ob-
ject’s location in the LL is known with certainty if the belief (in a cell) exceeds a
threshold (0.85). Our architecture (with the control loop in Algorithm 1), henceforth re-
ferred to as “PA”, was compared with: (1) POMDP-1; and (2) POMDP-2, which revises
POMDP-1 by assigning high probability values to defaults to bias the initial belief. We
evaluated two hypotheses: (H1) PA achieves goals more reliably and efficiently than
POMDP-1; (H2) our representation of defaults improves reliability and efficiency in
comparison with not using defaults or assigning high probability values to defaults.

4.2 Experimental Results

To evaluate H1, we first compared PA with POMDP-1 in trials in which the robot’s
initial position is known but the position of the object to be moved is unknown. The
solver used in POMDP-1 is given a fixed amount of time to compute action policies.
Figure 1(a) summarizes the ability to successfully achieve the assigned goal, as a func-
tion of the number of cells in the domain. Each data point in Figure 1(a) is the average
of 1000 trials, and each room is set to have four cells (for ease of interpretation). PA sig-
nificantly improves the robot’s ability to achieve the assigned goal in comparison with
POMDP-1. As the number of cells (i.e., domain size) increases, it becomes computa-
tionally difficult to generate good POMDP action policies which, in conjunction with
incorrect observations (e.g., false positives) significantly impacts the ability to complete
the trials. PA focuses the robot’s attention on relevant regions (e.g., specific rooms and
cells). As the domain size increases, the generation of a large number of plans of similar
cost may (with incorrect observations) affect the ability to achieve desired goals—the
impact is, however, much less pronounced.

Next, we computed the time taken by PA to generate a plan as the domain size (i.e.,
number of rooms and objects) increases. We conducted three sets of experiments in
which the robot reasons with: (1) all available knowledge of objects and rooms; (2)
only knowledge relevant to the assigned goal—e.g., if the robot knows an object’s de-
fault location, it need not reason about other objects and rooms to locate the object;
and (3) relevant knowledge and knowledge of an additional 20% of randomly selected
objects and rooms. Figure 2 shows that PA generates appropriate plans for domains
with a large number of rooms and objects. Using only the knowledge relevant to the
goal significantly reduces the planning time; this knowledge can be automatically se-
lected using the relations in the HL system description. Furthermore, it soon becomes

408 S. Zhang et al.

100y ——@ T T
T ’—‘*‘\‘\‘\‘\‘
60

a0 @ PA
& POMDP-1
205] 3 S
10 10 107 10° (f(] 20 30 40 50 60 70 80 90
Number of cells Number of rooms

Success (%)

Average no. of actions

(a) Success rate. (b) Default knowledge.

Fig. 1. (a) With a limit on the time to compute policies, PA significantly increases accuracy in
comparison with POMDP-1 as the number of cells increases; (b) Principled representation of
defaults significantly reduces the number of actions (and thus time) for achieving assigned goal

Rooms: 10 Rooms: 20 Rooms: 40 Rooms: 80
0y 1 20; 60, 300
< All knowledge
8 50 250
O 20% knowledge
é o = Relevant knowledge f 40 200
£ 10 30 150
=
s 4
o S 20 100
2 10 50
0

0 50 100 0 50 100 0 50 100 0 50 100
Number of objects
Fig. 2. Planning time as a function of the number of rooms and the number of objects in the
domain—PA scales to larger number of rooms and objects

computationally intractable to generate a plan with POMDP-1 for domains with many
objects and rooms; these results are not shown in Figure 2.

To evaluate H2, we first compared PA with PA*, a version that does not include any
default knowledge. Figure 1(b) summarizes the average number of actions executed per
trial as a function of the number of rooms—each data point is the average of 10000
trials. We observe that the principled use of default knowledge significantly reduces the
number of actions (and thus time) required to achieve the assigned goal. Next PA was
compared with POMDP-2, which assigns high probability values to default information
and revises the initial belief. The results with POMDP-2 can vary depending on: (a) the
numerical value chosen; and (b) whether the ground truth matches the default infor-
mation. For instance, if a large probability is assigned to the default knowledge that
books are typically in the library, but the book the robot has to move is an exception,
POMDP-2 takes a large amount of time to recover from the initial belief. PA, on the
other hand, can revise initial defaults and encode exceptions to defaults.

Finally, PA was compared with POMDP-1 on a wheeled robot over 50 trials on
two floors. Since manipulation is not a focus of this work, the robot asks for the de-
sired object to be placed in its gripper once it is next to it. This domain includes ad-
ditional places; the map is learned and revised by the robot over time. On the third
floor, we considered 15 rooms, including offices, labs, common areas and a corridor.

Towards an Architecture for Knowledge Representation and Reasoning in Robotics 409

To use POMDP-1 in such large domains, we used a hierarchical decomposition based
on our prior work [14]. The experiments included paired trials, e.g., over 15 trials
(each), POMDP-1 takes 1.64 as much time as PA to move specific objects to spe-
cific places; this 39% reduction in execution time is statistically significant; p-value
= 0.0023 at 95% level of significance. A video of a robot trial can be viewed online:
http://youtu.be/8zL4R8tebug

5 Conclusions

This paper described a knowledge representation and reasoning architecture that com-
bines the complementary strengths of declarative programming and probabilistic graph-
ical models. The architecture’s high-level (HL) and low-level (LL) system descriptions
are provided using an action language, and the HL. definition of recorded history is ex-
panded to allow prioritized defaults. Tentative plans created in the HL using common-
sense reasoning are implemented in the LL using probabilistic algorithms, generating
observations that add to the HL history. Experimental results indicate that the architec-
ture supports reasoning at the sensorimotor level and the cognitive level with violation
of defaults, noisy observations and unreliable actions, and scales well to large, complex
domains. The architecture thus provides fundamental capabilities for robots assisting
and collaborating with humans in complex real world application domains.

Acknowledgments. The authors thank Evgenii Balai for his help with the ASP soft-
ware used in the experimental trials. This work was supported in part by the U.S. ONR
Science of Autonomy Award N000O14-13-1-0766 and the EC-funded Strands project
FP7-IST-600623. Opinions and conclusions in this paper are those of the authors.

References

1. Balduccini, M., Gelfond, M.: Logic Programs with Consistency-Restoring Rules. In: Logical
Formalization of Commonsense Reasoning, AAAI SSS, pp. 9-18 (2003)

2. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

3. Baral, C., Gelfond, M., Rushton, N.: Probabilistic Reasoning with Answer Sets. Theory and
Practice of Logic Programming 9(1), 57-144 (2009)

4. Chen, X., Xie, J., Ji, J., Sui, Z.: Toward Open Knowledge Enabling for Human-Robot Inter-
action. Human-Robot Interaction 1(2), 100-117 (2012)

5. Erdem, E., Aker, E., Patoglu, V.: Answer Set Programming for Collaborative Housekeep-
ing Robotics: Representation, Reasoning, and Execution. Intelligent Service Robotics 5(4)
(2012)

6. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning and the Design of Intelligent
Agents. Cambridge University Press (2014)

7. Halpern, J.: Reasoning about Uncertainty. MIT Press (2003)

8. Hanheide, M., Gretton, C., Dearden, R., Hawes, N., Wyatt, J., Pronobis, A., Aydemir, A.,
Gobelbecker, M., Zender, H.: Exploiting Probabilistic Knowledge under Uncertain Sensing
for Efficient Robot Behaviour. In: International Joint Conference on Atrtificial Intelligence
(2011)

http://youtu.be/8zL4R8te6wg

410

10.

12.
13.

S. Zhang et al.

. Kaelbling, L., Lozano-Perez, T.: Integrated Task and Motion Planning in Belief Space. Inter-

national Journal of Robotics Research 32(9-10) (2013)
Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D.L., Kolobov, A.: BLOG: Probabilistic
Models with Unknown Objects. In: Statistical Relational Learning. MIT Press (2006)

. Ong, S.C., Png, S.W,, Hsu, D., Lee, W.S.: Planning under Uncertainty for Robotic Tasks with

Mixed Observability. IJRR 29(8), 1053-1068 (2010)

Richardson, M., Domingos, P.: Markov Logic Networks. Machine Learning 62(1) (2006)
Rosenthal, S., Veloso, M.: Mobile Robot Planning to Seek Help with Spatially Situated
Tasks. In: National Conference on Atrtificial Intelligence (July 2012)

. Zhang, S., Sridharan, M., Washington, C.: Active Visual Planning for Mobile Robot Teams

using Hierarchical POMDPs. IEEE Transactions on Robotics 29(4) (2013)

	Towards an Architecture for Knowledge Representation and Reasoning in Robotics
	1 Introduction
	2 Related Work
	3 KRR Architecture
	3.1 HL Domain Representation
	3.2 LL Domain Representation
	3.3 Control Loop

	4 Experimental Setup and Results
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Conclusions
	References

