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Active Visual Planning for Mobile Robot Teams
Using Hierarchical POMDPs

Shiqi Zhang, Mohan Sridharan, and Christian Washington

Abstract—Key challenges to widespread deployment of mobile
robots include collaboration and the ability to tailor sensing and
information processing to the task at hand. Partially observable
Markov decision processes (POMDPs), which are an instance of
probabilistic sequential decision-making, can be used to address
these challenges in domains characterized by partial observabil-
ity and nondeterministic action outcomes. However, such formu-
lations tend to be computationally intractable for domains that
have large complex state spaces and require robots to respond to
dynamic changes. This paper presents a hierarchical decomposi-
tion of POMDPs that incorporates adaptive observation functions,
constrained convolutional policies, and automatic belief propaga-
tion, enabling robots to retain capabilities for different tasks, direct
sensing to relevant locations, and determine the sequence of sensing
and processing algorithms best suited to any given task. A commu-
nication layer is added to the POMDP hierarchy for belief sharing
and collaboration in a team of robots. All algorithms are evaluated
in simulation and on physical robots, localizing target objects in
dynamic indoor domains.

Index Terms—Bayesian methods, hierarchical systems, intelli-
gent robots, Markov processes, multirobot systems, planning, robot
vision systems.

1. INTRODUCTION

OBILE robots are increasingly being deployed in real-
M world application domains such as disaster rescue and
medicine due to the ready availability of high-fidelity sensors
and the development of sophisticated algorithms to process sen-
sor inputs. Key challenges to widespread deployment of robots
include collaboration and the ability to adapt sensing and infor-
mation processing to the task at hand. In real-world domains
characterized by partial observability, nondeterministic action
outcomes, and unforeseen dynamic changes, a robot equipped
with multiple sensors cannot reliably observe the entire do-
main from a fixed location. In addition, information can be ex-
tracted from sensor inputs using algorithms with varying levels
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of uncertainty and computational complexity. It is, therefore, a
challenge for robots to respond to dynamic changes by fully ex-
ploiting information that is relevant to the task at hand. Although
humans can provide rich information about the task and domain,
humans may not have the time and expertise to provide elabo-
rate and accurate feedback in complex domains. Furthermore,
multirobot collaboration poses additional challenges because
communication may be unreliable and robots in the team may
possess different capabilities.

The long-term objective of our research is to enable robots to
collaborate with nonexpert humans, automatically acquiring and
using relevant sensor inputs and human feedback based on need
and availability. Toward this objective, this paper focuses on reli-
able and efficient vision-based sensing, information processing,
and collaboration in a team of mobile robots. Our prior work in-
troduced a novel two-layered hierarchical decomposition of par-
tially observable Markov decision processes (POMDPs) [15],
enabling a robot and a human to jointly reason about and ma-
nipulate objects in simplistic tabletop scenarios [29]. This paper
describes more recent research corresponding to the following
contributions [32].

1) Each robot automatically directs sensing to relevant lo-
cations and determines the sequence of information-
processing algorithms appropriate for any given task.

2) A communication layer is added to the POMDP hierarchy
to enable each robot to probabilistically merge own beliefs
with the information communicated by teammates.

The remainder of this paper is organized as follows. Section II
discusses related work in visual planning and collaboration,
while Section III describes our POMDP hierarchy. Experimental
results in simulation and on robots are presented in Section IV,
followed by a discussion of conclusions and future work in
Section V.

II. RELATED WORK

Classical planning algorithms typically require prior knowl-
edge of domain states, action outcomes, and contingencies [12],
and considerable research has been done to relax these con-
straints [3], [24]. The planning with knowledge and sensing
(PKS) planner [24] uses a first-order language to describe ac-
tions in terms of their effect on the agent’s knowledge, rather
than their effect on the world. The system is nondeterminis-
tic because the agent’s knowledge of state is not uniquely de-
termined by the actions performed. The Continual Planning
algorithm [3] interleaves planning, execution, and monitor-
ing and postpones reasoning about uncertain states by assert-
ing that action preconditions will be met when that point is
reached during plan execution. Replanning occurs if precondi-
tions are not met during execution or are met earlier. However,
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it is a challenge to use such algorithms to support capabilities
that are required in robot application domains, e.g., the ability
to accumulate evidence by applying information-processing al-
gorithms more than once.

The ability of POMDPs to model domains characterized by
partial observability and nondeterminism has been used to plan
actions in tasks such as robot navigation and image interpreta-
tion [10], [19]. Probabilistic graphical models have also been
used for sensor placement and active sensing [17]. These al-
gorithms typically require substantial knowledge of task and
domain and/or require human supervision, but human partici-
pants may not have the time and expertise to provide elaborate
feedback or accurate domain knowledge. In addition, POMDP
formulations of complex domains frequently result in expo-
nentially increasing state spaces, and modern POMDP solvers
can (in the worst case) have an exponential time complexity.
Researchers have, hence, imposed structure (or hierarchy) on
problem domains to support POMDP formulations [10], [25].
Theocharous [31] modeled hierarchical POMDPs as dynamic
Bayesian networks and used multiresolution spatial maps for
robot navigation. Pineau et al. [25] used a POMDP hierarchy
for behavior control of a robot assistant, with bottom-up plan-
ning and top-down action execution. However, these algorithms
still require expert supervision to create the hierarchy and asso-
ciated models. To make POMDP formulations computationally
tractable, researchers have also introduced factored representa-
tions that separate the fully and partially observable portions of
the state [21]. In parallel, attention is being devoted to knowl-
edge representation and the use of commonsense knowledge in
robotics [1], [8], [11]. More recent work is focusing on com-
bining logical and probabilistic reasoning for task and motion
planning on robots [13], [16]. However, substantial human su-
pervision is required to acquire and revise domain knowledge,
which may be a challenge in complex domains.

Many algorithms have been developed for multirobot and
multiagent collaboration [22], [23]. Researchers have also de-
veloped algorithms for decentralized information fusion, e.g.,
the decentralized delayed-state information filter enables het-
erogeneous agents to fuse information [7], and a decentralized
information-gathering algorithm has been able to provide scal-
ability, robustness, and modularity [20]. However, these algo-
rithms are not well suited to model the partial observability of
robots deployed in dynamic domains. Although decentralized
POMDPs (Dec-POMDPs) are being used for multiagent col-
laboration [18], [28], the computational complexity of solving
Dec-POMDPs is higher than that of default POMDPs [2]. An-
other option is to use interactive POMDPs (I-POMDPs) [14]
that enable agents to model the behavior (and preferences) of
other agents as interactive beliefs with arbitrary levels of nesting.
However, -POMDPs have high computational complexity and
require significant domain knowledge. An important factor in
multirobot collaboration is the unreliability of communication
between robots. Research has shown that complex communica-
tion strategies do not necessarily benefit robot teams engaged in
collaborative tasks [27]. The POMDP hierarchy described in this
paper supports automatic belief propagation and model genera-
tion, enabling robots to adapt sensing and information process-
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Fig. 1. Overview of the POMDP hierarchy and scenario.

ing to the task at hand. The hierarchy is augmented with a com-
munication layer for belief sharing and multirobot collaboration.

III. PROBLEM FORMULATION

This section describes the problem domain, formulates the
visual planning task using hierarchical POMDPs, and describes
the approach for multirobot collaboration.

A. Problem Domain and Hierarchy Overview

The visual planning and collaboration algorithms are illus-
trated in the context of a team of robots localizing objects in
large, complex, and dynamic indoor office domains. Fig. 1 sum-
marizes the POMDP hierarchy for sensing, information process-
ing, and collaboration. Each robot uses a POMDP hierarchy to
locate target objects. The top-level visual sensing (VS)-POMDP
computes the sequence of 3-D scenes to process to locate a spe-
cific target object (see Section III-B). For any chosen scene, the
robot moves to an appropriate location and uses a scene pro-
cessing (SP)-POMDP comprising one or two layers (depending
on scene complexity) to determine the sequence of information-
processing algorithms to apply on a sequence of regions of
interest (ROIs) in images of the scene (see Section III-C). Each
robot also uses the communication layer to share beliefs and
collaborate with teammates (see Section I1I-D).

B. Visual Sensing Partially Observable Markov Decision
Processes for Visual Search

In an office or a home, a robot has to move and analyze differ-
ent scenes because target objects may exist in different locations
in a room or in different rooms. Consider the situation where
the robot has learned a domain map based on (laser) range data,
using a simultaneous localization and mapping algorithm to re-
vise the map and compute own position in the map. To localize
a specific target, the 3-D area is represented as a discrete 2-D
occupancy grid. Each cell in the grid stores the probability of
occurrence of the target object in that cell. The size of each cell
is based on the field of view of the sensor (i.e., camera). The VS-
POMDP poses sensing as the task of determining a sequence
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of actions (i.e., scenes to process) that maximizes information
gain or equivalently reduces entropy of the probability distri-
bution over all cells. The VS-POMDP tuple (S, A, T, Z, O, R)
to localize an object in a domain with IV cells is defined as
follows.

1) S: {si, i € [1,N]} is the state vector; s; corresponds to
the event that the target object is in cell <.

2) A:{a;,i€[1,N]} is the set of actions. Executing a;
causes the robot to move to and analyze cell i.

3) T: S x Ax S —[0,1] is the state transition function,
i.e., an identity matrix for actions that do not change the
state.

4) Z: {present, absent} is the set of observations that indi-
cates the presence or absence of the target in a cell.

5) O0: S x A x Z — [0, 1] is the observation function, which
is learned (see below).

6) R: S x A— R is the reward specification that is based
on belief entropy (see below).

Since the robot cannot observe the true state, it maintains a

belief state: a probability distribution over the underlying set of
states. The entropy of belief distribution B; is given by

N . .
— " bjlog(b}) )
i=1

where b, is the ith entry of the belief distribution over the learned
domain map at time ¢. The reward of action a; is defined as the
reduction in entropy between belief state B;_; and the resultant
belief state B, after executing action a;:

R(a;) := H#(By_1) — H(By)
=" bFlog(vf) Zb log(b_;) @)
k

When nothing is known about the target object’s location, the
belief is uniformly distributed and entropy is maximum. En-
tropy reduces as the belief distribution converges to states likely
to be the target’s location. To enable robots to exploit local
symmetries in visual processing for computational efficiency,
costs associated with robot motion are included in a separate
postprocessing step [see (9)].

The observation function models the probability of target
detection as a function of the robot position and target position:

if isBlocked(s;, a;)

O(z; = present, s;,a) = Pr(z; = present|s;,a;,) =

else
— 1 T 1
O(Zg - pTeSent, Sj, a/k) - 7’] . ea)‘p —7}()5 E Q

O(z = absent, sj,a) =1 — O(z; = present, s;j, ai) 3)

where the probability of observing the target in cell 7, given that
the target is in cell j, and the focus is on cell k, i.e., p(z|s;, ax ),
is a Gaussian distribution whose mean is the target’s position.
The term «v is the offset between target position and the cell being
examined, and A represents the sensitivity of visual recognition
to distance. The covariance of the Gaussian, i.e., 3J, represents

the uncertainty in the observations, e.g., a higher uncertainty is
associated with an observation of the target at a greater distance.
The factor 7 is a normalizer. If there is an obstacle between robot
and the target, i.e., isBlocked(s;, a;), 3 is a small probability
that the target can still be observed. This observation function
is learned from the lower level POMDPs in a semisupervised
manner [29]—it is used to perform belief updates based on
observations and to generate observations in the simulated ex-
periments. As with the motion costs, the orientation of target
observations is included in a postprocessing step [see (16)].

Given the model parameters, belief update in a POMDP is
based on Bayesian inference:

O(s',ar41,0001) Y, T(s,a41,
p(oty1lar,br)

s') - Bi(s)

Byia(s') = G
POMDP solvers use such a model to compute a policy w/:
By — a; that maps belief states to actions. In the VS-POMDP,
an existing implementation of policy gradient algorithms [4] is
used to compute the stochastic policy that maximizes entropy
reduction over a planning horizon.

1) Convolutional Policy (Kernel Extraction): Practical do-
mains can change and have different shapes and sizes, and the
number of cells can be arbitrarily large; solving POMDP for-
mulations of such domains can be computationally expensive.
The proposed hierarchy addresses this challenge by learning a
convolutional policy kernel that exploits the rotation and shift
invariance of visual search. This strategy is motivated by the fact
that observations obtained by a robot at any location are primar-
ily influenced by (and modify beliefs about) the neighboring
locations [5]. A stochastic policy kernel is, hence, learned from
the baseline policy for a small local region:

/wv(g)c,ﬁ' (s — 3)ds

cEAh
states
where 7" is the (baseline) VS policy, CX is a mask of the same
size as the kernel being learned, K is the unnormalized kernel,
W is the count of accumulated weights for each action, and
K is the normalized kernel. A small kernel size is chosen to
allow generalization to maps of different sizes, and the baseline
policy’s size is chosen based on computational considerations.
No other constraints are imposed on the kernel or map. Consider
Fig. 2(a), where a 3 x 3 policy kernel is extracted froma 5 x 5
baseline policy: a 2-D matrix whose rows denote actions weights
for specific states. Each row is rearranged as a 2-D matrix (of the
same size as the map) that stores action weights when focusing
on a specific state, decomposing the policy into layers, as shown
in the left column of Fig. 2(a). A 3 x 3 mask C% is convolved
with the policy layers, and weights in the region covered by
the mask are accumulated, as shown in the middle column of
Fig. 2(a). Since weights in cells outside the masked region are
not considered, the resultant kernel is normalized (using matrix
W) to obtain K, as shown in the right column of Fig. 2(a).

In addition to the learned policy kernel, a small weight value
is computed to be assigned (during policy extension) to cells

K(s)= (1" @ C&)(
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Fig. 2.
(c) Hot-spot detection for motion planning.

further away from the center of the mask:

Eactions Zstatcs T‘-V — Z Zstatcs [_(
Nactions X Nstatcs - SZ(W)

wh = (©6)
where the default weight value is a function of the number of
actions Ngctions, the number of states Ngiates, and the size of
the weight matrix sz(W).

When the policy kernel is used to generate policies for larger
maps (see below), the number of states covered by the ker-
nel remains unchanged. Since policy weights over the map are
normalized, the kernel’s effect will be different on maps of dif-
ferent sizes, e.g., it will be much smaller when the size of the
map grows larger. A heuristic function is, hence, used to revise
the value of W# such that the ratio of importance assigned to
the area covered and left uncovered by the kernel is similar over
maps of different sizes:
where N¥ . and NZ, .. are the number of states in the large
map and baseline kernel, respectively. The natural logarithm
function (In) is used because the conversion of weight values
to probabilities is based on a softmax-like activation function.
Although it may take some time to learn a baseline policy for a
small area and extract a policy kernel, this one-time computation
does not need to be repeated, unless the properties of the robot’s
sensors change significantly.

2) Convolutional Policy (Policy Extension): The learned

policy kernel is used to compute the policy for larger maps
using an efficient convolution operation:

NE . os — 52(W)

states
— sz(W) @

NEZ

states

WBzWB—ln<

KoCE 3

") = (K@ Ch)) = [ KECEE -9 ®
where K is the policy kernel, C is the mask of the same size
as the target map, and 7. is the convolutional policy. Consider
Fig. 2(b), where a learned 3 x 3 kernel is convolved with a
7 x 7 mask to generate the policy for a 7 x 7 map. This policy
is generated one layer at a time, by centering the kernel on the
state represented by the layer, e.g., there are 49 layers for the
7 x 7 map. Since the kernel covers (at most) nine cells, other

cells are assigned the weight computed in (7), and the policy is

(a) Extracting 3 x 3 policy kernel from a 5 x 5 baseline policy. (b) Using a learned 3 x 3 policy kernel to generate 7 x 7 convolutional policy.

normalized. Robots can thus use the policy kernel to generate
policies for maps of larger areas in real time.

Mobile robots have to physically move between cells in the
map to search for target objects. Sensing, information process-
ing, and actuation on robots are nondeterministic. In addition,
robot motion takes time and expends energy. A cost is, hence,
assigned to movement by revising each action’s (policy) weights
during policy execution based on the distance to be traveled and
the robot’s speed:

1

dy+(ai,a;)

w(aj) = f(w,da-) = w(ay) -
speed

(€))

where w(a;) is the policy weight foraction a;, and d4- (a;, a; ) is
the distance between the current cell and candidate cell. The A*
algorithm is used to compute the shortest path from current cell
to a candidate cell. The modified policy trades off likelihood of
localizing a target against the cost of moving to that location. A
robot thus does not choose to travel a long distance between two
sensing actions, unless it expects to obtain a significant amount
of information about the target’s location when it reaches the
candidate cell. When the domain map changes (e.g., doors are
closed or obstacles are moved), the robot also uses this policy
reweighting to quickly recompute the distances between cells
and revise the action weights before making subsequent action
choices. Appropriate values of speed can be used in (9) by each
robot.

While the revision of action weights captures motion-based
costs, hill-climbing is used to make the search more efficient in
large maps. Fig. 2(c) shows a domain map discretized into cells,
with the green cell being the position of a robot after executing
the most recent action. There are three cells in the map with
significantly higher weights than other cells: The orange and
pink cells have w = 0.3 (not w), and the blue cell has w = 0.2.
Since the robot’s current position is equidistant from the pink
and orange cells, these cells have an equal chance of being the
next cell visited by the robot. However, it makes sense to visit
the pink cell first because it is also close to the blue cell, which
is a candidate cell of similar relevance. We, therefore, enable
robots to consider the entire path of candidate cells, i.e., the path
with the largest summation of w values instead of just looking
for a target cell with the largest w. It is, however, infeasible to
evaluate all possible paths through all cells in a large map. Our
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approach, therefore, detects “hot-spots,” i.e., cells with beliefs
substantially larger than their immediate neighborhood, and
evaluates paths through them. The number of hot-spots (N"%)
is a small fraction of the number of cells in the domain map.
To compute hot-spots, N"* seeds are selected randomly or ini-
tialized based on prior knowledge and refined by hill-climbing
to arrive at local maxima such as the orange, blue, and pink
cells in Fig. 2(c). The robot considers these hot-spots for further
analysis by evaluating paths through them:

Nbs i
W™ ([hg, by, ... hyns]) = Z f(w(hi)7 ZdA*(hjl7hj)>
i=1 j=1

(10)
where h; is the 7th hot-spot, hg is the robot’s current position,
and w(h;) is the (action) weight of the cell corresponding to hot-
spot h;. The function f is defined in (9). For a set of hot-spots,
the robot evaluates all paths through these hot-spots and chooses
acell for analysis, e.g., values of pink—blue—orange and orange—
pink—blue paths in Fig. 2(c) are 0.0672 and 0.0591, respectively,
and the pink cell is analyzed next. This path planning does
not imply that the robot will move through the entire path;
the observations made by a robot in a cell revise the belief
distribution and planned path. The path planning ensures that
the robot’s attention is directed toward the most interesting cells.

C. Scene Processing Partially Observable Markov Decision
Processes for Scene Processing

Invoking the policy obtained by solving the VS-POMDP for a
specific target causes the robot to move to a cell and analyze the
corresponding 3-D scene by extracting salient ROIs in an image
of the scene. There are two options for scene processing based
on scene complexity, i.e., based on number of ROIs in the im-
age and features used to represent objects. In uncluttered scenes
with a small number of ROIs, the SP-POMDP has two layers.
Each ROI is modeled as a lower level (LL)-POMDP, where ac-
tions are information-processing operators (e.g., detect color).
The LL policy provides the sequence of operators to apply on a
specific ROI to detect the desired object. The LL policies of all
image ROIs are used to automatically create and solve a high-
level (HL)-POMDP, where actions direct the robot’s attention
to specific ROIs. Executing the HL policy causes the robot to
analyze a specific ROI using the corresponding LL policy. Exe-
cuting the LL policy till termination provides an observation that
causes an HL belief update and action choice until presence or
absence of the target is established in the image. The creation of
POMDP models for these two layers (i.e., HL and LL) has been
described in detail in our prior work, which focused on sim-
plistic tabletop scenarios and considered scenes with partially
occluded objects [29]. In cluttered scenes with many ROIs, on
the other hand, the robot may need to learn sophisticated object
models. Scene processing is then formulated as a POMDP that
plans the sequence of operators to apply on the image to es-
tablish presence or absence of the desired object. Section IV-B
provides some examples.

The overall operation of the POMDP hierarchy is as follows:
The robot uses the learned domain map to generate the VS-

POMDP, which is solved to obtain the VS policy that is used
to choose a cell in the domain map for analysis. The robot
moves to this cell and processes images of the corresponding
3-D scene using the SP-POMDP with one or two layers, cre-
ating and solving the associated POMDP models at run-time.
Executing the SP policies until termination provides an observa-
tion in the VS-POMDP regarding presence or absence of target
in the image. After the belief update, the robot invokes the VS
policy to choose a cell (and thus a 3-D scene) for subsequent
analysis. This process continues until the object is found or the
belief distribution does not converge over a period of time. The
key advantage is that automatic belief propagation and model
generation in all levels of the hierarchy results in autonomous,
reliable, and efficient visual sensing and information processing
in complex domains.

D. Multirobot Collaboration

Next, consider a team of robots tasked with localizing one or
more target objects. Each robot maintains a separate belief vec-
tor for each target. Each robot also uses hierarchical POMDPs
(as described previously) to adapt visual sensing and informa-
tion processing to the task and domain. This section describes
a probabilistic approach for the robots to share beliefs and col-
laborate to locate the desired target objects. The data structure
maintained by each robot consists of

{Bi, fi}, Vi e [L,|TL|] (1)

where B; is the belief vector for a specific target ©+ among the
list of target objects (1T'L), and f; is a binary flag that states if
the target has been discovered. In addition, each robot stores an
action map ., a vector of the same size as the belief vector.
Each entry in this vector stores the number of times the robot
has visited the corresponding cell in the domain map:

M= {my,...,my) (12)

where m; is the count of the number of times cell ¢ has been
visited. The entries in the action map corresponding to locations
that have not been visited in the recent past decay over time.
As a robot moves to detect a specific target, it updates its action
map and uses each observation to update the appropriate belief
vector. After such a belief update, the robot communicates with
teammates by broadcasting a package that includes current be-
lief vectors for all objects (V2 B;), discovery flags (Vi f;), action
map ('), and own position. If the bandwidth is limited, robots
can communicate just the changes in the data structure at a low
frequency.

A robot cannot completely trust information received from
teammates. At the same time, the communicated estimates pro-
vide useful information about (possibly large) regions of the
domain that the robot has not visited and hence has no knowl-
edge about. In the proposed belief merging scheme, each robot,
therefore, assigns probabilistic weights to own beliefs and be-
liefs communicated by each teammate. The objective is to as-
sign greater importance to estimates communicated by a robot
if the robot has recently visited the corresponding region of
the map. Each robot, therefore, uses the action map entries as a
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probabilistic weight distribution to merge own beliefs with com-
municated beliefs:

mj,oxx'n . bg',own +

j,comm bj,comm
piown _ M ; ;
i

2

j,own
JOVE 4

j,comm
) i

m

vje LN, Vielt,|TL] (13)

where bf is jth entry of the belief vector corresponding to tar-
get i, while m?°™" and m/"“*™™ are entries of action maps of
the robot and the teammate whose communicated belief is being
merged. The action map entries are not merged to prevent rumor
propagation among teammates. When one or more robots revise
their domain maps in response to changes, data association can
be achieved by grounding (i.e., matching) the communicated
belief vectors using the corresponding communicated robot lo-
cations. Each robot is thus able to assimilate communicated
estimates that may complement or contradict own beliefs, and
the merged beliefs are revised as each robot’s beliefs change.
Although this belief merging strategy can (in theory) be sensi-
tive to the order in which the communicated beliefs are merged,
it works well in practice.

Each robot also updates the vector of flags representing the
discovery of targets (f;) based on efforts of all tteammates:

F =N e [LTL (14)

where each target is assumed to be found when at least one
robot in the team has communicated its discovery (belief in
a cell above a threshold) to teammates. There may, hence, be
times when a target object is being searched for by more than one
team member. This overlap of targets among robots in the team
is allowed (intentionally) to ensure effective coverage of target
objects by robots in the team. However, in practice, multiple
robots rarely search for the same object.

Once a target is discovered, a new target is chosen from the
list of undiscovered objects in 7'L:

targetID = argmax{max B;(j)} (15)
i J

where the robot identifies target ¢ whose location it is most cer-
tain about based on the merged beliefs of all teammates. The
robot thus selects the target object that it is likely to locate with
the least effort. This choice of a new target can also include a
heuristic cost based on distance of travel and relative priority of
the remaining targets (if such information is available). These
costs can be incorporated as weights on the belief vectors, simi-
lar to the policy reweighting performed by (9). The key outcome
is that robots in a team are able to reliably and efficiently coor-
dinate their efforts despite unreliable communication. Changes
in team composition are addressed automatically, and the lack
of communication causes each robot to smoothly transition to
operating as if it were the only robot in the team. The next
section evaluates the visual sensing, processing, and multirobot
collaboration capabilities.

IV. EXPERIMENTAL SETUP AND RESULTS

This section describes the initial setup and results of exper-
iments in simulation and on physical robots (see Fig. 5). The
objective is to evaluate each robot’s ability to 1) use the POMDP
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hierarchy to adapt visual sensing and processing to the task at
hand and 2) probabilistically merge own beliefs with communi-
cated beliefs for collaboration. These capabilities are evaluated
in the context of robots localizing target objects in indoor do-
mains. Given the prior use of SP-POMDP in other domains [29],
this section considers the result of using SP-POMDP (to process
an image) as a response for executing an HL action. The VS-
POMDP models are solved using policy gradient algorithms in
the LibPG library [4]. Since it is not feasible to execute a large
number of trials on mobile robots, experiments also included
realistic simulations of grid maps of different sizes and teams
with different numbers of robots.

Evaluation on robots requires the following initial setup and
revisions. First, in an initial semisupervised learning phase,
robots apply different information-processing algorithms on im-
ages of objects with known labels to learn object models and
some POMDP model parameters [29]; some examples of object
models are described in Section IV-B. Second, during policy
execution, robots compute the relative distance and bearing to
objects. Since including orientation as a parameter in the obser-
vation set will destroy the local invariance in policy space, the
belief update [see (4)] is modified:

if —target
N O0(5,a,0)3 5 T(s,a,8)b(s)  O(s',a,0)b(s)
B(s) = Pr(ola,b) ~ Pr(o|a,b)
else
N O(s',a,0) Y e T(s,a,5)b(s) B O(s',a,0)b(s)
B(s) = Pr(o|a, b) = " Pr(oa,b)
(16)

where B(s') is the updated belief for state " after action a. The
belief update can be simplified (as shown) because the transition
functions are identity matrices. When a target is detected, the
relative distance and bearing are used to find global location of
the target in the grid map (based on robot’s estimate of own
location). The belief update is performed as if the action cor-
responding to this global location (@) had been executed. This
update also models the observation that false positives are rare,
while false negatives are common when actions are executed on
robots. Third, a robot moving between cells may receive sensor
inputs relevant to the current task, e.g., it may unexpectedly have
the target in its field of view. The robot, therefore, periodically
processes input images at low resolution to update current be-
liefs. Fourth, robots learn and revise domain map using (laser)
range data and acquire semantic labels (e.g., “kitchen” and “of-
fice”) from humans.

Target objects in the experimental trials are assumed to be
unique, and observations of targets are assumed to be inde-
pendent of each other. In addition, although the incremental
accumulation of evidence (of target occurrence) by the POMDP
hierarchy can (in theory) be used to localize objects that move
(or are moved), targets are assumed to stay within a local area,
while they are being located by robots. These simplifications are
used to focus on the underlying planning challenge and study the
effects of factors such as prior knowledge and communication
failures.
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Experiments were designed to evaluate the following hy-
potheses: I) Constrained convolutional (CC) policy provides
similar detection accuracy to nonconvolutional (i.e., baseline)
policy but is much more efficient; II) CC policy significantly
reduces time for reliable target localization compared with man-
ually tuned heuristic search strategies; and III) belief merging
enables a team of robots to fully utilize prior knowledge and col-
laborate, despite unreliable communication. Hypothesis I was
evaluated in simulation, while hypotheses II and III were eval-
uated in simulation and on robots.

A. Simulation Experiments

In each simulated trial, a grid map of specific size was gener-
ated with the locations of targets and robots chosen randomly. A
cell is assumed to contain a target when belief in the cell exceeds
0.9. Each data point in the following results is the average of
1000 simulated trials.

Hypothesis I was evaluated with the adaptive observation
functions and policy reweighting described in (3)—(9). A base-
line policy computed for a 5 x 5 map was used to extract a
policy kernel that was used to compute policies for larger maps.
Fig. 3(a) compares the CC policy against the baseline policy for
a 7 x 7 map—the x-axis shows the number of times the policy
was invoked, as a fraction of the number of states. A larger
map was not used to generate the baseline policy (for compari-
son) because the time taken to generate a stable baseline policy
increases exponentially. A trial was deemed successful if the
target’s location was identified correctly. No statistically signif-
icant difference was observed in the target localization accuracy
obtained with CC and baseline policies.

Hypothesis II was evaluated by comparing the CC policy with
a heuristic policy that makes greedy action choices. The results
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(a) Belief merging and hierarchical POMDPs result in robust multirobot collaboration. (b) Performance improves if prior information is incorporated.

shown in Fig. 3(b) used a 15 x 15 convolutional policy gen-
erated from a 5 x 5 kernel. Existence of prior knowledge was
simulated by adding bias to the initial belief—70% of the belief
was uniformly distributed over all cells, while the remaining
30% was Gaussian distributed around the target. To generate
the data points in Fig. 3(b), trials were terminated after a certain
distance had been traveled—the cell with the largest belief was
then considered the target’s location. The robot’s performance
is scored as the weighted distance between the actual and de-
tected locations of targets. Fig. 3(b) shows that the CC policy
significantly reduces the distance traveled (and thus time taken)
by the robot to locate targets with high accuracy.

Next, hypothesis III (i.e., multirobot collaboration capability)
was evaluated. Assuming that all robots in a team move at the
same speed, the average distance moved by robots in a team
(in an episode or trial) was used as a measure of the team’s
performance; better collaboration will result in lower values
of this measure. In each trial, robots and targets were placed
randomly in a grid map. A Gaussian bias (20%) was added to
the initial beliefina3 x 3 area around every target, and the belief
vector was normalized. To simulate unreliable communication,
a communication success rate (CSR) parameter was introduced
and setto 0.5, i.e., every other broadcasted package (on average)
was not received.

Additional experiments were conducted to evaluate the effect
of team size, prior knowledge, and CSR on multirobot collabo-
ration. Fig. 4(a) shows the results for different numbers of robots
and targets in a 15 x 15 grid map based on a real-world office
scenario. The results show that the robots collaborate effec-
tively to find the targets. Next, Fig. 4(b) shows the performance
of a team of two robots tasked with localizing two targets, as
a function of the bias in the initial belief. Robots are typically
likely to have some prior knowledge of the locations of objects,
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TABLE I
TARGET LOCALIZATION ACCURACY € [0, 1] AS A FUNCTION OF THE
(NORMALIZED) DISTANCE TRAVELED BY THE TEAM OF ROBOTS

Approach Normalized covered distance
0.5 1.0 1.5 2.0
Random | 0.033 | 0.171 | 0.382 | 0.537
Heuristic | 0.079 | 0.334 | 0.549 | 0.817
Proposed | 0.153 | 0.544 | 0.825 | 0.957

The proposed approach enables accurate target localization
in much less time than random and heuristic collaboration
strategies.

e.g., a microwave is likely to be found in the kitchen. Fig. 4(b)
shows that robots are able to identify the targets faster as more
information about target locations is made available or the in-
formation available about the targets’ positions is more accurate
(i.e., smaller variance of bias). Next, Fig. 4(c) summarizes re-
sults of experimental trials where the CSR was varied as robot
teams were asked to localize two target objects. Communication
between robots in the real world can be unreliable. The results
in Fig. 4(c) indicate that although a low likelihood of successful
communication (i.e., low CSR) hurts the team’s performance,
the time taken to localize targets stabilizes as CSR increases and
is then no longer sensitive to the value of CSR.

Table I summarizes target localization accuracy € [0, 1] as
a function of the distance traveled (normalized by the number
of cells in the map), when two robots searched for targets in a
15 x 15 map. Initial positions of robots and targets were ran-
domly assigned in each trial. The proposed approach (belief
sharing with hierarchical POMDPs) was compared with 1) ran-
dom selection of actions and assignment of targets to robots
(row labeled “random”) and 2) a (greedy) heuristic policy that
selects targets and actions based on the cell with the largest
belief (row labeled “heuristic”). To simulate realistic scenarios,
prior belief was assigned to multiple areas in the map (including
the target location). Results show that belief sharing in hierar-
chical POMDPs significantly reduces the distance traveled by
robots to detect targets with high accuracy.

The experiments described above were repeated for different
numbers of robots and targets, different levels of prior beliefs,
and different values of CSR in domain maps ranging in size from
5 x 5 to 25 x 25. The experimental results indicate that using
hierarchical POMDPs and the belief sharing strategy enables a
team of robots to collaborate and localize target objects reliably
and efficiently. As stated earlier, multiple robots are (intention-
ally) allowed to search for the same target, but instances of such
overlap occur very infrequently.

B. Robot Experiments

Experiments were conducted on a wheeled robot and a team
of humanoid robots in indoor domains (see Fig. 5).

1) Experiments on Wheeled Robot: The hierarchical
POMDPs were used for planning sensing and information pro-
cessing on the Erratic robot platform shown in Fig. 5(a). This
robot is equipped with stereo and monocular cameras that pro-
vide 640 x 480 images at 30 Hz and a laser range finder with an
angular range of +135° for a distance of 30 m. All processing
is performed using a dual-core 2.6-GHz processor on board the
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(a) (b)

Fig.5. Robot platforms used in experiments. (a) Erratic robot. (b) Nao robots.

Fig. 6. Occupancy-grid map of the third floor of the CS department with 13
faculty offices, three research labs, a conference room, and a common area with
a kitchen.

robot. Experiments were conducted in an indoor domain com-
prising multiple floors of the Computer Science Department
at Texas Tech University. Fig. 6 shows the result of using a
simultaneous localization and mapping algorithm [9] to learn
the occupancy-grid map of a floor with three research labs, 13
faculty offices, a conference room, and a common area with a
kitchen. The size of each cell is ~2 m x 2 m, and the size of
the learned policy kernel is 5 x 5.

Object models learned by the robot consist of color distri-
butions and the Binary Robust Independent Elementary Fea-
tures (BRIEF) [6], i.e., local image gradient features. Although
BRIEEF features are not rotation and scale invariant, images cap-
tured in the learning phase are automatically transformed to
model different rotations and scales; features extracted from
all these images populate object models. Such object models
enable robots to recognize objects, despite partial occlusions.
Fig. 3(c) shows a test image’s BRIEF features being matched
with those in a learned object model. Object models also include
ameasure of size to compute the relative distance and bearing of
objects. Many scenes in this domain are cluttered, resulting in
images with many ROIs and object models consisting of com-
plex features. As stated in Section III-C, SP-POMDP has one
(two) layer(s) for cluttered (uncluttered) scenes. During policy
execution, the robot analyzes scenes from multiple viewpoints.
Target objects include boxes, cups, books, and other robots in
complex backgrounds. All targets are assumed to be visually
distinguishable.

For modular software development, algorithms were imple-
mented in the Robot Operating System (ROS) [26] framework.
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Fig. 7. Relevant subset of nodes in the ROS implementation of the proposed
algorithms.

TABLE I
TARGET LOCALIZATION TIME EXPRESSED AS A FRACTION OF THE TIME TAKEN
BY THE PROPOSED APPROACH

Search and Localization time for specific targets
Collaboration Wheeled robot Humanoid robots
Strategies Box in Fig. 3(c) | Nao robot | Boxes Balls
Random - - 1.93 1.64
Heuristic 1.47 1.44 1.2 1.03
Proposed 1 1 1 1

Use of POMDP hierarchy enables the wheeled robot to identify targets reliably and
efficiently. Sharing POMDP beliefs enables a team of humanoid robots to improve target
localization time.

Fig. 7 gives an overview of a relevant subset of the ROS imple-
mentation. Our planning algorithms are placed in the vs_planner
node, which communicates with the vs vision node that pro-
cesses input images to populate the <v_pack> package. This
package contains the ID of detected objects, relative distance,
and bearing of the objects, as well as (probability) measures of
the certainty associated with the observations. Belief updates
occur when the robot arrives at a desired cell and processes
images of the scene, or processes images during navigation to
a cell. The planner node sends coordinates of desired cells to
the movement control node move base and then waits for a
response, e.g., arrived when the desired cell is reached or
not-arrived when an unexpected change such as closing a
door makes a location inaccessible. The hokuyo node provides
laser readings to the motion control node and the localization
node amcl. The platform driver node erratic_base_driver moves
the robot platform based on the velocity command cmd_vel.
The position and goal are sent and received by nodes that
aid in local path planning, localization, and navigation.

In each trial, the robot’s initial position and the positions of
target objects were chosen randomly. Belief distributions were
initialized to give the robot some prior knowledge of object lo-
cations. The left half of Table II summarizes localization time
for specific target objects (i.e., a representative subset of the ex-
periments). Each data point is averaged over 1015 trials. Since
the robot and target positions differ between trials, results for
random and heuristic strategies are expressed as a multiple of
the proposed strategy’s results, e.g., the average time taken to
localize the Box with the POMDP hierarchy is 4.08 min. The
heuristic strategy that makes greedy action choices requires sig-
nificant manual tuning of the associated parameters. Table II
does not show results for the random strategy due to the large
variance; although the (average) multiplying factor is ~ 3, many
trials do not terminate even after 15 min. For all targets, the

POMDP hierarchy significantly reduces the localization time,
in comparison with random and heuristic (multiplying factor
of 1.5) strategies. The results are more pronounced than in
the simulation because the domain (see Fig. 6) is more com-
plex. A video of an experimental trial can be viewed online at
http://youtu.be/CbsCOScuuBk

2) Experiments on Humanoid Robots: Multirobot collab-
oration experiments were conducted on the humanoid (Nao)
robots shown in Fig. 5(b). The Nao is equipped with multiple
monocular cameras that provide 640 x 480 images at 30 Hz
and ultrasound sensors for obstacle avoidance. Since stable hu-
manoid navigation on different surfaces is a challenge, experi-
ments were conducted on an indoor (4 m x 6 m) robot soccer
field, which is typically used by a team of Naos to play a com-
petitive game of soccer. This moderately constrained domain
captures the collaboration challenges we seek to address. Each
robot has a domain map and localizes based on domain land-
marks such as goals and field corners (with known map loca-
tions) detected in images. All scenes in this domain are treated as
uncluttered, but challenging scenarios are created by artificially
introducing obstacles that the robot(s) have to walk around to
see targets and landmarks. All computation was performed us-
ing a 500-MHz processor on-board the robots. Robots broadcast
packages to teammates to share information. The size of each
cell in the domain map is ~0.5 m, and the size of the learned
policy kernel is 5 x 5.

Target objects include boxes and balls of different colors and
shapes. Since objects are composed of homogeneous colors,
gradient features are not used in the object models, and vi-
sual processing operators consist of algorithms that detect the
dominant color and shape in each ROI. Scene processing was
modeled as a two-layered POMDP, with a POMDP that selects
operators (i.e., algorithms) to apply on each salient ROI in an
image and a POMDP that controls the selection of image ROIs
for processing. The transfer of control between SP-POMDP and
VS-POMDP is described in Section III-C.

In all multirobot collaboration experiments, a team of (1-4)
Naos localized target objects. The right half of Table II sum-
marizes a representative subset of these experiments, where two
Naos localized two targets (boxes and balls). The proposed strat-
egy is compared with 1) a strategy that randomly assigns robots
to targets and 2) a (greedy) heuristic collaboration strategy that
requires substantial manual tuning to consider factors such as
distance to target and presence of obstacles [30]. The target
localization times are smaller due to collaborative effort and
relative simplicity of the domain (compared with Fig. 6). Using
the proposed strategy, the average time taken by two Naos to
localize two boxes is 1.01 min. The proposed strategy signifi-
cantly reduces the target localization time in comparison with
the random strategy and performs better than (or at least as well
as) the heuristic strategy. Similar results are obtained for dif-
ferent combinations (and numbers) of robots and targets. The
effect of communication uncertainty is arbitrary with the heuris-
tic strategy, e.g., robots cluster around targets and take twice as
much time to localize targets. However, with the proposed col-
laboration strategy, delayed or lost communication packets did
not affect target localization when CSR was above a low thresh-
old (= 0.2). The results reported in Table II correspond to a
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CSR of ~ 0.5. Furthermore, adding or removing a team mem-
ber resulted in the smooth redistribution of targets among robots.
These experiments show that the POMDP hierarchy and belief
sharing strategy enable robots to adapt visual sensing and in-
formation processing to the task at hand and collaborate despite
unreliable communication.

V. CONCLUSION

This paper has described an algorithm for planning visual
sensing, information processing, and collaboration in a team of
robots. A hierarchical decomposition of POMDPs enables each
mobile robot to automatically tailor visual sensing and informa-
tion processing to each of a range of tasks at hand. The hierarchy
incorporates CC policies and automatic belief propagation, en-
abling a robot to operate reliably and efficiently in complex
indoor domains. Belief sharing between a team of robots is ac-
complished by augmenting the hierarchical POMDPs by a com-
munication layer, enabling each robot to merge beliefs acquired
by processing sensor inputs with the beliefs communicated by
teammates. The robots are thus able to fully utilize the avail-
able information and collaborate in simulated and real-world
domains.

One direction of further investigation is to explicitly model
the sensing and actuation capabilities of different robots and
incorporate these learned models to improve the multirobot col-
laboration capabilities. Experiments will also include a larger
number of robots and targets, as well as different types of
robots and information-processing algorithms. Furthermore, we
are exploring the integration of the POMDP hierarchy with a
knowledge representation and nonmonotonic logical inference
paradigm [33]. The ultimate goal is to enable reliable, efficient,
and autonomous multirobot (and human—robot) collaboration in
complex real-world domains.
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