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Abstract—Mobile robots equipped with multiple sensors and
deployed in real-world domains frequently find it difficult to pro-
cess all sensor inputs, or to operate without any human input and
domain knowledge. At the same time, robots cannot be equipped
with all relevant domain knowledge in advance, and humans
are unlikely to have the time and expertise to provide elaborate
and accurate feedback. This paper presents a novel framework
that addresses these challenges by integrating high-level logical
inference with low-level probabilistic sequential decision-making.
Specifically, Answer Set Programming (ASP), a non-monotonic
logic programming paradigm, is used to represent, reason with
and revise domain knowledge obtained from sensor inputs
and high-level human feedback, while hierarchical partially
observable Markov decision processes (POMDPs) are used to
automatically adapt visual sensing and information processing to
the task at hand. Furthermore, a psychophysics-inspired strategy
is used to merge the output of logical inference with probabilistic
beliefs. All algorithms are evaluated in simulation and on wheeled
robots localizing target objects in indoor domains.

I. INTRODUCTION

Sophisticated learning, planning and control algorithms

have enabled the use of mobile robots and agents in do-

mains such as disaster rescue, reconnaissance and health care.

Real-world domains characterized by partial observability,

non-deterministic action outcomes and unforeseen dynamic

changes frequently make it difficult for robots to process all

sensor inputs, model the entire domain or operate without

substantial domain knowledge and human feedback. At the

same time, robots cannot be provided all relevant domain

knowledge in advance. In addition, although human feedback

can provide rich information about task and domain, humans

are unlikely to have the time and expertise to provide elabo-

rate and accurate feedback in complex domains. Information

extracted from sensory cues and human feedback may also

have different degrees of relevance to current or future tasks.

Widespread deployment of intelligent robots and agents in

real-world domains thus poses some formidable challenges—

robots need to represent, reason with and revise domain

knowledge; automatically adapt sensing and processing to the

task at hand; and learn from high-level human feedback.

Partially observable Markov decision processes (POMDPs),

an instance of probabilistic sequential decision-making, have

been used to plan sensing and navigation on robots by

modeling the associated uncertainty [10], [21]. However, it

is a challenge to include common sense knowledge obtained

from sensor inputs or human feedback in a POMDP. On the

other hand, although non-monotonic logic programming is

well-suited for knowledge representation and logical inference,

it is not appropriate for modeling the uncertainty in real-

world sensing and navigation [8]. This paper presents a novel

framework that integrates Answer Set Programming (ASP), a

non-monotonic logic programming paradigm, with hierarchi-

cal POMDPs to make the following contributions:

• ASP enables robots to represent, reason with and revise

spatial knowledge of the application domain (and domain

objects), using online repositories and information extracted

from sensory cues and human feedback.

• Building on our prior work on hierarchical POMDPs,

robots are enabled to adapt sensing and information pro-

cessing to the task at hand [21]. The entropy of POMDP

beliefs is used to identify the need for human feedback.

• A psychophysics-inspired strategy enables robots to use

logical facts representing current domain knowledge to

probabilistically initialize and revise POMDP beliefs.

The framework is evaluated in simulation and on wheeled

robots that use visual inputs, high-level human feedback and

laser range data to localize objects in complex indoor domains.

II. RELATED WORK

Mobile robots frequently have to plan a sequence of sensing

and information processing actions, e.g., for locating objects

and interacting with humans. Many POMDP-based algorithms

have been developed to plan sensing, navigation and in-

teraction on robots [10], [12], [16], [21]. Algorithms have

also been developed for deriving preconditions and effects of

actions in relational POMDPs [18], and for exploiting first-

order reasoning in relationally-specified POMDPs [17]. In

parallel, common sense reasoning using knowledge bases or

human feedback has significantly improved the performance

of robots [4], [9]. However, using logical inference and

probabilistic modeling of uncertainty to exploit sensor inputs

and human feedback, continues to be a challenge on robots.

Research in classical planning has resulted in many so-

phisticated algorithms for logical reasoning and knowledge

representation [9]. However, many of these algorithms require

a significant amount of prior knowledge, or are unable to



Fig. 1: Framework integrates probabilistic planning, non-

monotonic logical reasoning and human-robot interaction.

merge new (unreliable) information from sensors and humans

with the current beliefs encoded in the knowledge base [6],

[20]. Answer Set Programming (ASP), a non-monotonic logic

programming paradigm, is well-suited for common sense

knowledge representation and reasoning (especially default

reasoning) [1], [8]. ASP has been used in different application

domains and it has been integrated with natural language pro-

cessing for service robots [4]. However, real-world sensing and

navigation are non-deterministic, and humans are unlikely to

provide elaborate and accurate feedback in complex domains.

ASP is not well-equipped to model this uncertainty in sensing,

navigation and interaction on mobile robots.

Many algorithms are being developed to integrate logi-

cal reasoning with probabilistic planning, e.g., the switching

planner enables a robot to choose between logical reasoning

and POMDPs for action selection [10]. Such a strategy,

however, does not fully exploit the complementary properties

of logical reasoning and POMDPs. Researchers have also

combined deterministic and probabilistic algorithms for task

and motion planning [13], while semantic maps and common

sense knowledge about object positions have been used for

target localization [11]. However, these algorithms use domain

knowledge obtained from extensive human input or (generic)

public resources (e.g., Internet [11]), which may not accurately

reflect the specific task or domain. These algorithms are also

typically unable to perform non-monotonic logical inference,

where adding a new fact can reduce the set of (inferred) con-

sequences. Therefore, integrating knowledge representation,

(high-level) logical inference and probabilistic modeling of

(low-level) uncertainty in sensing and navigation continues to

be a formidable challenge for mobile robots. Our framework

is a significant step towards addressing these challenges.

III. PROBLEM FORMULATION

Figure 1 depicts our framework. The Knowledge Base (KB)

in ASP contains causal rules and domain facts. Currently,

rules are hand-coded and facts are learned from sensor inputs,

human feedback and online repositories. For any specific

query (or task), reasoning in the KB results in an Answer Set

containing a set of grounded literals (Section III-A). The un-

certainty in sensing and navigation is modeled using POMDP

belief distributions (Section III-B). The answer sets from

ASP initialize or revise POMDP belief distributions based

Fig. 2: Illustrative example of information about object cate-

gories stored in the knowledge base.

on a psychophysics-inspired strategy (Section III-C1). Robots

obtain observations from sensors activated when needed (e.g.,

cameras) and sensors that are always in operation (e.g., range

finders). Observations made with high certainty update the KB,

while other observations update POMDP belief distributions.

Since human feedback is a valuable resource that is unreliable

and not always available, human-robot interaction (HRI) is

used when needed, e.g., if an object’s location is known with

considerable certainty, there is not much to gain by soliciting

human help to locate the object. Robots therefore determine

the need for human feedback based on entropy of POMDP

belief distributions (Section III-C2). This paper illustrates the

framework in the context of mobile robots localizing (i.e.,

computing the location of) target objects in indoor domains.

A. Knowledge Representation and Reasoning with ASP

Answer Set Programming (ASP) is a non-monotonic logic

programming paradigm [1]. An ASP program is a collection

of statements describing domain objects and relations between

them [8]. An answer set is a set of ground literals that represent

beliefs of an agent associated with the program. Program

consequences are statements that are true in all such belief sets.

ASP provides the ability to perform default reasoning using

concepts such as default negation and epistemic disjunction,

e.g., unlike “¬ a”, “not a” only implies that “a is not

believed to be true” and does not imply that “a is believed

to be false”. New information can hence be used to smoothly

revise statements that are currently believed to be true.

The illustrative example of a robot localizing target objects

can be reduced to finding answer sets for queries. The semantic

(2D) domain description has the following elements: room/1,

a space bounded by walls and doors that can be occupied

by robots and objects; object/1, a visually identifiable

element in a room; and category/1, a set of objects or

sub-categories. Categories with objects as children are primary

categories. A tree of object categories is created automatically

from the KB—Figure 2 is an example for electronics. Informa-

tion is extracted automatically from online repositories (e.g.,

Amazon) to identify some of the relationships between object

categories. These relationships are used to create a subset of

the tree, e.g., some of the nodes and links from root node

to primary categories in Figure 2. Robots use sensor inputs

and human feedback to add instances of objects in the KB



and revise the tree, e.g., room1 has a printer (shown as red

triangle) and two scanners (red diamonds). All objects are

visually distinguishable, including targets such as a new printer

(yellow triangle) that is in room1 unknown to the robot.

The following predicates represent some relations between

elements: (1) is(X,C) implies category C is an ancestor

of object or category X, e.g., is(tv, electronics);

(2) observed(O,R,S) implies that object O is observed

in room R at timestep S; (3) located(C,R,S) implies

that object(s) of category C can be (inferred) in room R at

timestep S; and (4) location(R,X,Y) provides the (X,Y)

coordinates of the center of room R in a learned domain map.

The following rules are used for reasoning: (1) if object O

of category C is observed in room R, it is believed that objects

of category C can be in R; (2) if objects of category C can

be in room R, objects of the parent category (and all ancestor

categories) of C can be in R; and (3) (rules of inertia) an object

retains its location until it is known to be elsewhere and a room

remains accessible until it is known to inaccessible.

located(C,R,S) :- observed(O,R,S), is(O,C)

located(C1,R,S) :- located(C2,R,S), is(C2,C1)

observed(O,R1,S+1):- observed(O,R1,S),

not observed(O,R2,S+1), R1 != R2

accessible(R,S+1):- accessible(R,S),

not ¬ accessible(R,S+1)

Consider the following illustrative example of non-monotonic

reasoning in ASP:

• Test-case 1 has the following facts:
step(1..2). observed(printer1, lab, 1).

is(printer1, printer).

Reasoning in ASP produces the following answer set (ex-

isting facts are not repeated):
observed(printer1, lab, 2).

located(printer, lab, 1).

located(printer, lab, 2).

• Now consider Test-case 2 that has a new fact about an

object’s current location:
step(1..2). observed(printer1, lab, 1).

is(printer1, printer).

observed(printer1, office, 2). % new fact

Reasoning in ASP now produces the following new answer

set (existing facts not repeated):
located(printer, lab, 1).

located(printer, office, 2).

Adding a new fact has thus reduced the set of consequences

and revised the outcome of the previous inference step—see

Baral [1] for more details on ASP. We use the Clingo grounder

and solver [7] to solve ASP programs.

B. Uncertainty Modeling with POMDP

Let us assume that ASP has provided candidate locations

for a target object in a learned map of an office. The robot now

has to move and analyze a sequence of images of a sequence

of scenes. This objective is posed as a planning task and

addressed using our prior work on hierarchical POMDPs for

reliable and efficient visual sensing and information processing

on robots [21]. This hierarchy is briefly summarized below.

The high-level (HL) POMDP determines the sequence of

3D scenes to process to locate the target. The 3D area is

represented as a discrete 2D occupancy grid. Each entry of

the state vector corresponds to the event that the target is in

the corresponding grid cell. To estimate the state, a probability

distribution of target occurrence is maintained over the states,

called the belief state. Uncertainty in belief is measured by

computing the entropy:

H (Bt) = −
N

∑
i=1

bi,t log(bi,t) (1)

where bi,t is the ith entry of belief state at time t. The reward

of action at is defined as the reduction in entropy between

belief state Bt−1 and the resultant belief state Bt . The robot

learns an observation function to model the probability of

target detection as a function of robot position, target position,

camera’s field of view and lower levels of the hierarchy. A

policy gradient solver [2] is then used to compute a policy

that maps belief states to actions by minimizing entropy over

a planning horizon. The number of grid cells can increase

exponentially and change arbitrarily in real-world domains,

making real-time solutions difficult. The robot hence learns a

convolutional policy kernel from the policy for a small region,

exploiting the rotation and shift invariance properties of visual

search [3]. This kernel is used to automatically and efficiently

generate policies for larger maps. Since movement between

grid cells expends time and introduces errors, movement is

associated with a cost proportional to the distance to be

traveled. The robot also improves computational efficiency by

planning a path through grids that have a significantly higher

probability than their immediate neighbors.

For any chosen scene, the remaining layers of the hierarchy

plan the sequence of algorithms to be applied on a sequence

of regions of interest (ROIs) in a sequence of images. Salient

ROIs are extracted from each image of the scene and each ROI

is modeled as a lower-level (LL) POMDP. Each LL policy

provides the sequence of information operators (e.g., detect

color) to apply on a specific ROI to detect the target object.

LL policies of all image ROIs are used to automatically create

an intermediate-level (IL) POMDP. Executing an action in the

IL policy directs attention to a specific ROI. Executing the

corresponding LL policy (until termination) provides an obser-

vation that causes an IL belief update and action choice until

presence or absence of the target in the image is determined.

This provides an HL observation and belief update, resulting

in the robot choosing a scene for subsequent analysis. This

process continues until the object is found or the belief does

not converge over a period of time. The entire hierarchy adapts

automatically to the task at hand—see [19], [21] for details.

C. Integrating ASP and POMDP

The ASP formulation (Section III-A) models domain knowl-

edge and provides an answer set that represents the result

of non-monotonic logical inference. The POMDP formulation

models the uncertainty in sensing and navigation to adapt sens-

ing and processing to any given task. This section describes



a psychophysics-inspired strategy to convert answer sets to

beliefs that initialize or revise POMDP beliefs. The entropy

of POMDP beliefs is then used to identify the need for high-

level human feedback, using information extracted from sensor

inputs and human feedback to augment and revise the KB.

1) Bias Generation and Belief Merging: Merging the

beliefs encoded by an answer set and a POMDP belief

distribution proceeds in two steps: (1) a bias distribution is

generated using literals in the answer set relevant to the

current task; and (2) the bias distribution is merged with the

POMDP belief distribution.

Bias Generation: The bias distribution is computed us-

ing the object categories in the KB and the following hypothe-

ses that capture co-occurrence relationships between objects:

1. An object is more likely to be co-located with close

“relatives”, where closeness is defined as the distance to

the lowest common ancestor in the tree of object categories.

E.g., in Figure 2, a printer is more likely to be co-located

with scanners than DVD players.

2. For any category, the influence of “siblings”, i.e., of cat-

egories with a common parent, increases as the number of

“siblings” decreases. The influence of a “sibling” category

increases when there is sufficient support for the sibling’s

existence (predicate observed/3).

These hypotheses enable robust evidence propagation. The

relationship between object occurrence probabilities (i.e., be-

lief state entries) and evidence provided by categories (and

siblings) is inspired by Fechner’s law1. For ease of explana-

tion, consider the bias distribution in the context of locating a

specific target in a set of rooms:

bAi = α ln



1+
Mi

∑
m=1

NF
i,m

∏
Ki,m−1

k=0 NS
i,k,m



 (2)

where bAi , the probability that the target is in room i, is

a logarithmic function (inspired by Fechner’s law) of the

evidence from the current answer set, and α is a normalizer.

The parameter m is the index of primary category Cm, ranging

from 1 to the total number of primary categories with leaf

objects known to be in room i (i.e., Mi)—NF
i,m counts the

number of objects of Cm known in room i. Values of Mi

and NF
i,m are obtained by counting the number of relevant

located/3 and observed/3 literals (respectively) in the

answer set. Ki,m is the height (in object category tree) of the

lowest common ancestor of Cm and the target object. The

product in the denominator accounts for category nodes along

the path from Cm to the lowest common ancestor. Variable k

represents the height of nodes along this path, ranging from

0 (object level) to Ki,m − 1, one level less than the lowest

common ancestor. NS
i,k,m is the number of siblings of the node

(including itself) on the path at height k, and NS
i,0,m = 1.

1Fechner’s law was introduced in 1860 and serves as the basis of modern
Psychophysics. It states that subjective sensation is proportional to the
logarithm of stimulus intensity.

Belief Merging: Since the KB (and hence the answer set)

can contain incomplete or outdated information, the answer

set-based bias distribution and POMDP beliefs are merged

using relative trust factors, resulting in a r-norm probability

that is a generalized form of linear and logarithmic averaging

methods [5], e.g., it computes the arithmetic average for r = 1.

b′i = β
{

(1−Ω)(bi)
r +Ω(bAi )

r
}1/r

(3)

where bAi is the answer set-based belief of target occurrence

in room i (Equation 2), while bi and b′i are the beliefs of

target occurrence in room i before and after belief merging

(respectively), and β is a normalizer. The parameter Ω ∈ [0,1]
represents the relative trust in the beliefs encoded by the an-

swer set. The effects of Ω and r on accuracy and computational

efficiency are analyzed experimentally in Section IV.

Consider the illustrative example in Figure 2. The cor-

responding answer set is used to compute the ASP-based

bias distribution bA = [0.3890,0.3361,0.0000,0.2749]. The

initial POMDP belief distribution (uniform in the absence of

knowledge) is then revised as described in Equation 3, with

r = 1 (arithmetic average) and the trust factor Ω set such that

POMDP and ASP are trusted equally. The revised belief vector

for the target is [0.3195,0.2931,0.1250,0.2625]. The belief for

each room is spread over grid cells in the room using a large-

variance Gaussian centered in the middle of the room to induce

the robot to move to a central location. Prior knowledge about

likely locations of objects within rooms suitably revises the

mean and variance of the Gaussian. The updated beliefs are

used in the learned HL-POMDP policy to choose an action,

resulting in the robot moving to analyze a specific scene.

2) Knowledge acquisition: The final component of the

framework (in Figure 1) is the knowledge acquisition from

sensor inputs and human-robot interaction (HRI). To simulate

high-level feedback from non-expert humans with limited

time, human feedback is limited to simplistic verbal inputs.

As the robot moves in the application domain, images are

processed periodically to detect humans (specific humans are

not modeled separately). When a human is detected nearby,

the robot computes the need for human feedback based on

entropy of the belief distribution for the object being localized.

A low entropy implies that the robot is confident of the target

object’s location—the human is then ignored (except for safe

navigation). If the entropy is high, the robot draws the human’s

attention, followed by a query about a room’s accessibility or

the target object’s location. These queries and responses are

based on simplistic templates such as:

Robot: Where is the [object]?

Human: In [room]./I do not know.

Robot: Is [room] accessible?

Human: Yes./No./I do not know.

In addition to human feedback, the robot processes images

at specific locations in the domain and low-resolution images

as it moves between locations, detecting objects using learned

object models. An object detected with high certainty is added

to the knowledge base, using the detected position to form a



suitable fact. This piece of information may be relevant to

the current task and/or to future tasks. In addition to domain

objects of interest, robot may observe unforeseen changes in

object configurations and obstacle locations, e.g., a door that

was open may now be closed. The robot can confirm such

changes using human feedback, and changes detected with

high certainty also update the KB. These updates and additions

to the KB occur incrementally and continuously, adding and

eliminating areas for subsequent analysis.

IV. EXPERIMENTAL EVALUATION

Experimental trials were conducted in simulation and on

wheeled robots visually identifying the locations of target

objects in indoor domains. The following hypotheses were

evaluated: (I) integrating ASP and POMDP enables reliable

target localization while significantly reducing target localiza-

tion time in comparison with using ASP or POMDP individu-

ally; and (II) entropy-based strategy enables the robot to make

best use of human feedback to localize targets.

A. Experiments in Simulated Domains

A realistic simulated domain was designed to extensively

evaluate the framework, using learned object models and

observation models to simulate motion and perception. Fig-

ure 3(a) shows an instance where four rooms are connected

by a surrounding hallway in a 15× 15 grid. Fifty stationary

objects in 10 primary categories are simulated, and one or

more of these objects are randomly selected as targets whose

positions are unknown to the robot. The robot automatically

creates the corresponding category tree from the KB. Each

data point in the results described below is the average

of 5000 simulated trials. In each trial, the robot’s location,

target object(s) and location(s) of target object(s) are chosen

randomly. Unless stated otherwise, a trial ends when the belief

in a grid cell exceeds a threshold (e.g., 0.90).

Hypothesis I is evaluated using three measures: accuracy,

localization time and the ratio of these values. The accuracy

is maximum when reported position and ground truth position

of an object are identical (e.g., same grid cell), and drops off

exponentially as the distance between reported position and

ground truth position increases. Figures 4(a)-4(c) summarize

experimental results, with the x-axis depicting the extent to

which ASP beliefs are trusted (Ω)—all results in these figures

are statistically significant. Figure 4(a) shows that when ASP

beliefs are not considered (0 along the x-axis), the accuracy

is high (≈ 0.95) irrespective of the value of r (Equation 3).

Even the few errors correspond to objects close to the edge

of a grid cell being localized in one of the neighboring cells.

However, the corresponding target localization time is large,

as shown in Figure 4(b). As the robot starts considering ASP-

based beliefs, i.e., Ω grows from 0 to 1, the target localization

time decreases substantially. The effect of ASP-based beliefs

on accuracy also depends on the value of r, e.g., a decrease in

accuracy is observed very soon for r= 0.05 but not for r= 0.2.

Target localization accuracy and time have different relative

importance in different situations. The trade-off between these

two measures is modeled by computing their ratio. Figure 4(c)

displays the value of this third measure as a function of the

value of Ω. We observe that irrespective of the value of r, the

best accuracy-time balance occurs when the value of Ω (i.e.,

trust in ASP-based beliefs) is neither too high nor too low. We

therefore conclude that combining answer sets and POMDP

beliefs exploits their complementary properties, resulting in

high accuracy while reducing the target localization time.

Some errors in the experimental trials are due to the

incorrect organization of the categories (extracted from online

repositories), and the robot not receiving sufficient observa-

tions to correct these KB errors. Another reason is that the

evidence from “related” objects can sometimes overwhelm

certain facts. For instance, when the scanner in room2 is

selected as the target in Figure 2, room1 has the highest initial

belief based on the answer set. It is a challenge for robots to

recover from such situations if ASP-based beliefs are trusted

substantially, especially when this trust is combined with false

positive observations of target(s).

Next, to evaluate hypothesis II, human feedback is consid-

ered in addition to sensor inputs. The simulator uses known

ground truth to simulate human feedback that is available to

the robot approximately once every five actions. In addition,

there is a 20% likelihood of the feedback being incorrect.

The results in Figure 3(b) are for the domain in Figure 3(a).

Humans can help identify the room containing the target (but

not the exact location) and comment on accessibility of rooms,

as described in Section III-C2. The x-axis shows the belief

entropy threshold above which the robot seeks human input.

The three solid lines correspond to different costs associated

with human feedback (in units of time). As a baseline for

comparison, the three dashed lines (different colors correspond

to different costs) represent the random acquisition of human

feedback without considering the entropy. The trust factor

for ASP is chosen in the range (≈ 0.2− 0.6) that results in

good performance in Figures 4(a)–4(c) and r is 1. When the

threshold equals the maximum entropy (≈ 5.4), the robot never

asks for human feedback, whereas the robot always solicits

human feedback (when available) when the threshold is 0.

Since human feedback can be unreliable, acquiring and using

a lot of human feedback increases target localization time.

At the same time, if the robot rarely solicits human feedback

(high entropy threshold), target localization takes more time.

For any entropy threshold between 2.5− 5.0, time taken by

the robot to localize targets is minimum. Human feedback

thus helps significantly if used when needed. Furthermore, as

cost of interacting with humans increases, feedback should be

acquired more judiciously.

B. Experiments on Physical Robots

Experiments were also conducted on physical robots op-

erating on two floors of the Computer Science department

at our University. The second floor, for instance, has three

classrooms, a conference room, eight offices, a research lab,

a kitchen and a common area—see Figure 5(a). The test

platform was a wheeled robot (inset in Figure 5(a)) equipped
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Fig. 3: (a) Illustrative example of simulated domain; (b) target localization time when robot solicits human feedback based on

belief state entropy—target localization takes longer with too little or too much use of human feedback.
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Fig. 4: Performance measures for our framework that integrates ASP and POMDP: accuracy of target localization, target

localization time, and the ratio of these measures, as a function of trust in ASP (Ω). Results are statistically significant.

with cameras, range finder, microphones and on-board 2GHz

processor. Algorithms were implemented on the robot using

the Robot Operating System [15].

Figure 5(b) shows examples of target objects in this domain.

Objects are characterized using visual features such as color

and local image gradients. The robot uses our visual learning

algorithm to autonomously learn object models as a combina-

tion of models for these individual features [14]. Inputs from

sensors and humans are processed to populate the KB. Plan

execution in the lowest level of hierarchical POMDPs causes

the robot to apply a sequence of actions, i.e., operators based

on individual feature models in the learned object models, on

input images, merging evidence to identify target objects.

We conducted 30 experimental trials—in each trial, the

robot’s starting location, targets (e.g., a coffee maker or a

printer) and target locations were chosen randomly. The robot

starts with learned object models, learned domain map and

some domain knowledge, which are revised incrementally.

In all experimental trials, the robot successfully localized

target objects in the appropriate positions. The results were

similar to the simulated trials summarized in Figure 3(b)

and Figure 4. In these trials, target localization times vary

substantially depending on the initial positions of robot and

targets. We therefore do not report the actual target localization

times measured in the individual trials. However, using ASP-

based beliefs and POMDP beliefs significantly reduces the

target localization time by a factor of ≈ 0.6 (on average,

with Ω = 0.4) compared with just using POMDP beliefs.

Trusting ASP beliefs a lot more than POMDP beliefs reduces

localization accuracy—just using ASP beliefs results in trials

where the robot does not find the targets even after a long

period of time. Furthermore, judicious use of human feedback

enables the robot to interact with different humans and further

reduce target localization time.

Consider a trial where the robot knows the presence of

a refrigerator and a microwave in the “kitchen” and has to

localize a coffee maker. Based on the object category tree

of the current knowledge base, the robot concludes that the

coffee maker is highly likely to occur in the same room with

other kitchenware, resulting in high initial belief (of target

occurrence) in the kitchen after merging the answer set-based

bias distribution with the POMDP beliefs. As the robot moves

to the kitchen, it meets a human but does not ask for input

because the belief entropy is not high. In the main office

outside the kitchen, the robot detects an HP printer that had

recently been moved from the floor above, and the door to

an instructor’s office that was closed recently. These pieces

of information, though not relevant to the current task, revise

the KB for later use. When the robot reaches the kitchen, it

processes images of different scenes and localizes the coffee



(a) Domain map and wheeled robot platform. (b) Examples of target objects in domain.

Fig. 5: Domain description for experiments on physical robots.

maker. If the robot has to enter the instructor’s office or

find the (recently moved) HP printer in subsequent trials, it

uses the existing knowledge to automatically generate suitable

initial belief distributions and solicits human input appropri-

ately. The video of an experimental trial is available online:

www.cs.ttu.edu/∼smohan/Movies/Planning/aspPomdp.mp4

V. CONCLUSIONS

This paper presented a novel framework that integrates

answer set programming, hierarchical POMDPs and a

psychophysics-inspired strategy to enable a mobile robot to:

represent, reason with and revise domain knowledge, auto-

matically adapt sensing and information processing to the

task at hand, merge non-monotonic logical inference with

probabilistic beliefs, and acquire and use high-level human

feedback when such feedback is available and necessary.

Experimental results show that the framework enables a robot

to localize objects in complex indoor domains, making best

use of domain knowledge, sensor inputs and human feedback.

The framework opens many directions of future research.

We will explore a tighter coupling between logical inference

and probabilistic planning for intelligent robots and agents.

We will also investigate other algorithms for bias generation

from answer sets, and consider other tasks such as information

gathering and area coverage for evaluating the framework. An-

other research direction is the choice of questions for human

feedback to enable more realistic human-robot interaction.

The ultimate goal is to enable widespread deployment of

mobile robots that can interact and collaborate with humans

in complex real-world domains.
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