ISE 101 — Introduction to Information Systems

e Lecture 7 Objectives:
— Dictionaries
— Graphical user interface (GUI)

DICTIONARIES

Nonsequential Data Collections

Lists allows us to store and retrieve items from sequential
data collections.

When we need to access an item of the collection, we
call it using its index (position of the item) which is an
integer

In Python, there are more flexible ways of storing data
using key-value pair

These collections are called dictionary

Instead of using index—=>value as in lists, key = value
pairs are used in dictionaries

keys can be of any immutable type

Nonsequential Data Collections

* Adictionary in Python can be created using key-value
pairs with curly brakets {}

{<key>:<value>,<key>:<value>,...}

 The function dict creates a new dictionary with no
items.

>>> x=dict()

Dictionaries

>>>
myPasswords={"sis":"pass1","bankA":"pass2","bankB"
:"pass3"}

>>> myPasswords
{'sis': 'passl’, 'bankB': 'pass3’, 'bankA': 'pass2'}
* Once the dictionary is created, we can use the keys to
access the corresponding value
<dictionary>[<key>]
>>> myPasswords["bankA"]
'pass?’

Dictionaries

e Dictionaries are mutable collections that implement
mapping from keys to values

e Keys can be of any immutable type
— strings
— tuples

e Values can be of any type

* Dictionaries are very efficient and can store large
amounts of items

e Python provides built-in functions for dictionaries

Dictionaries

* Dictionaries can be extended dynamically
>>> myPasswords
{'sis': 'pass1’, 'bankB': 'pass3’, 'bankA": 'pass2'}
>>> myPasswords["bankC"]="pass3'
>>> myPasswords
{'sis': 'pass1’, 'bankB': 'pass3’, 'bankA'": 'pass2’, 'bankC":
'pass3'}
>>>

 There is no order (sequence) in the dictionary. Mapping is
based on the key values

 The len function works on dictionaries; it returns the number
of key-value pairs:

>>> |len(myPasswords)
4

Dictionaries

wetod weamng

<dict>.has_key(<key>)

<key> in <dict>
<dict>.keys()
<dict>.values()

<dict>.items()

<dict>.get(<key>,<default>)

del <dict>[<key>]

<dict>.clear()

Returns true if dictionary contains the
specified key, false if it does not

Same as has_key function
Returns a list of keys
Returns a list of the values

Returns a list of tuples (key,value)
representing the key-value pairs

If dictionary has key returns its value;
otherwise returns default

Deletes the specified entry

Deletes all entries

Dictionaries

>>> myPasswords

{'sis': 'passl’, 'bankB': 'pass3’, 'bankA': 'pass2’, 'bankC': 'pass3'}
>>> myPasswords.keys()

['sis', 'bankB', 'bankA', 'bankC']

>>> myPasswords.values()

['passl’, 'pass3’, 'pass2’, 'pass3’]

>>> "BankA" in myPasswords

False

>>> "sis" in myPasswords

True

>>> del myPasswords["sis"

>>> myPasswords

{'bankB': 'pass3’, 'bankA': 'pass2’, 'bankC': 'pass3'}
>>> myPasswords.get("bankA","nothing")

'pass?’

>>> myPasswords.get("bank","nothing")

'nothing'

Example

Write a function
countWords(filename)

that takes a filename as argument, counts the occurance
of each word in that file and displays them.

Example

def countWords(filename):

try:
fp=open(filename)
fc=fp.read()

except:
print('File I0 problem')
return

fp.close()

#Hempty dictionary to store word counts
word_count=dict()

#split into words
word_list=fc.split()
for word in word_ list:
if word in word_count:
word_count[word]=word_count[word]+1
else:
word_count[word]=1

for key in word_count:
print(key+'-—>'+str(word_count[key]))

Dictionaries and Tuples

Dictionaries have a method called items that returns a list of
tuples, where each tuple is a key-value pair.

>>>d ={a’":0,’b’":1, 'c’:2}

>>>t = d.items()

>>> print t

[(d’, 0), (°c’, 2), ("D, 1)]
As you should expect from a dictionary, the items are in no
particular order.

Conversely, you can use a list of tuples to initialize a new
dictionary:

>>>t=[(a, 0), (¢, 2), (b, 1)]

>>> d = dict(t)

>>> print d

{a’:0,’c’:2,’b’: 1}

Dictionaries and Tuples

 Combining this feature with zip yields a concise way to create a
dictionary:
>>> d = dict(zip(‘abc’, range(3)))
>>> print d
{‘a’:0,‘c’:2,'b": 1}
 The dictionary method update also takes a list of tuples and adds
them, as key-value pairs, to an existing dictionary.

e Combining items, tuple assignment and for, you get the idiom for
traversing the keys and values of a dictionary:

for key, value in d.items():
print(value, key)

The output of this loop is:

Oa

2C

1b

Dictionaries and Tuples

* |tis common to use tuples as keys in dictionaries

* For example, a telephone directory might map from
ast-name, firstname pairs to telephone numbers.

e Assuming that we have defined last, first and
number, we could write:
directory|[last,first] = number
* The expression in brackets is a tuple. We could use
tuple assignment to traverse this dictionary.

for last, first in directory:
print (first, last, directory[last,first])

Example

* Write a Python function named countPairs that takes a
numeric list and count the number of pair occurances

 Consider thelist [1,2,3,2,1,3,2,1,2]
* In this list

—(1,2) > 2

—(3,2)2> 2

—(1,3)2>1

—(2,3)2>1

—(2,1) > 2

Example

(efcountPairs(nlist): \1

pair_counts=dict()

for i in range(0,len(nlist)-1):
if (nlist[i],nlist[i+1]) in pair_counts:
pair_counts[nlist[i],nlist[i+1]]=
pair_counts[nlist[i],nlist[i+1]]+1
else:
pair_counts[nlist[i],nlist[i+1]]=1

for pair in pair_counts:

I print(pair,'-—>',str(pair_counts[pair])) 1

GRAPHICAL USER INTERFACE (GUI)

Graphical User Interface (GUI) design

 Modern software uses GUI to interface users
 GUIl includes

— Windows, dialogs

— Ul controls (button, textbox etc)

— Events (mouse, keyboard, time etc.)
 Frameworks are used for GUI design

— Tkinter

— wxWidgets

—Qt

— GTK+

GUI Design

e Although there are many frameworks, their concepts are
very similar

— Standard controls (ie. Button, textbox, menu etc.) exist
in all frameworks

— Events associated with each control (ie. Mouse click,
resize, content changed etc.) exist in all frameworks

— (Nearly) all frameworks come with a layout design
utility (ie. QtDesigner). These utilities make it easier to
design the screen layouts.

— Some of the frameworks are OS dependent (ie. .NET),
works only with a specific OS.

— Works as event-driven

GUI Design

* OS independent frameworks can work on any OS 2
more portable code

* Once the concept of GUI is grasped, learning different
frameworks does not take too much time

* |In this course, we are going to learn a very simple GUI
framework (graphics.py by Zelle)

* This framework supplies thin wrapper classes to Tkinter
framework which is quite complicated.

Event-based Programming

* Programming techniques we have seen in this class so far
— Procedural
— Object oriented

* |nthese techniques, commands are executed in a sequential
manner. Functions are called whenever they are in the
execution flow

e Difference of procedural and object oriented techniques lies
in how we arrange data and functions.

« When Ul is employed, the code executes depending of events
happening
* Events may be coming from a user or the system. Eg. when

the user clicks on a button, or when the duration of a timer
ends an event is created

Event Handler Functions

* A function (called event-handler) should be written to
handle each possible event. When an event occurs, the
corresponding handler function is executed by the
system.

* This way of programming is called event-based
programming

 When the program is started, it is initialized (show the
dialogs etc.) and starts to wait for events

 Most of the programs with Ul works like this.

Graphics Library

e Graphics library is a simple Ul framework designed (by
John Zelle) for teaching purpose

e |t can be downloaded from

http://mcsp.wartburg.edu/zelle/python/graphics.py
A reference can also be downloaded from

http://mcsp.wartburg.edu/zelle/python/graphics/graphic
s.pdf

Graphics Library

* Copy graphics.py into
C:\Python32\Lib
e To use this library, it should be imported using
>>> from graphics import *
 Then you can start using functions within this library
 There are two kinds of objects in the library.

— The GraphWin class implements a window where
drawing can be done,

— GraphicsObjects are provided that can be drawn into a
GraphWin.

Simple Example

from graphics import *

def main():
win = GraphWin("My Circle",100,100)
c=Circle(Point(50,50),10)
c.draw(win)
win.getMouse()

win.close()

main()

Graphics Library

e Graphic library includes the following objects:
— Point,
— Line,
— Circle,
— Oval,
— Rectangle,
— Polygon,
— Text,
— Entry (for text-based input),
— Image

GraphWin Object

A GraphWin object represents a window on the screen where
graphical images may be drawn. A program may define any
number of GraphWins.

A GraphWin understands the following methods:

— GraphWin(title, width, height, autoflush) Constructs a new
graphics window for drawing on the screen. The
parameters are optional, the default title is “Graphics
Window,” and the default size is 200 x 200. The autoflush
parameter, if True causes the window to be immediately
updated after every drawing operation. The default value
is False, allowing operations to “batch up” for better
efficiency.

— plot(x, y, color) Draws the pixel at (x, y) in the window.
Color is optional, black is the default. Note: pixel-level
operations are very inefficient and this method should be
avoided.

GraphWin Object

A GraphWin understands the following methods:

— plotPixel(x, y, Color) Draws the pixel at the “raw”
position (x, y) ignoring any coordinate transformations
set up by setCoords. Note: pixel-level operations are
very inefficient and this method should be avoided.

— setBackground(color) Sets the window background to
the given color. The initial background is gray.

— close() Closes the on-screen window. Once a window
is closed, further operations on the window will raise a
GraphicsError exception.

GraphWin Object

— isClosed() Returns a Boolean indicating if the window has
been closed either by an explicit call to close or a click on
its close box.

— getMouse() Pauses for the user to click in the window and
returns where the mouse was clicked as a Point object.
Raises GraphicsError if the window is closed while
getMouse is in progress.

— setCoords(xll, yll, xur, yur) Sets the coordinate system of
the window. The lower left corner is (xll, yll) and the upper
right corner is (xur, yur). All subsequent drawing will be
done with respect to the altered coordinate system (except
for plotPixel).

— update() Causes any pending window operations to be
performed. Normally, this will happen automatically during
idle periods. Explicit update() calls may be useful for
animations.

GraphWin Examples

>>> win=GraphWin("This title will appear on the top of the
window",30,100)

This title will appear on the top of the window

>>> win.setBackground('red’)

This title will appear on the top of the window

r 0000000001
>>> p=win.getMouse()
>>> p.X

662

>>> p.y
9

GraphWin Examples

>>> win=GraphWin("This title will appear on the top of the
window",300,300)

>>> win.plotPixel(150,150,'red')

This title will appear on the fop... g|§|

Graphic Objects

 The module provides the following classes of drawable objects:
— Point,
— Line,
— Circle,
— Oval,
— Rectangle,
— Polygon,
— Text.

* All objects are initially created unfilled with a black outline. All
graphics objects support the following generic set of methods:

— setFill(color) Sets the interior of the object to the given color.

— setOutline(color) Sets the outline of the object to the given
color.

Graphic Objects

— setWidth(pixels) Sets the width of the outline of the object
to this many pixels. (Does not work for Point.)

— draw(aGraphWin) Draws the object into the given
GraphWin. An object may only be drawn in one window at
a time.

— undraw() Undraws the object from a graphics window.
Returns silently if object is not drawn.

— move(dx,dy) Moves the object dx units in the x direction
and dy units in the y direction. If the object is currently
drawn, its image is adjusted to the new position.

— clone() Returns a duplicate of the object. Clones are always
created in an undrawn state. Other than that, they are
identical to the cloned object.

Point Object

e Point(x,y) Constructs a point having the given
coordinates.

e getX() Returns the x coordinate of a point.
* getY() Returns the y coordinate of a point.

Line Object

e Line(pointl, point2) Constructs a line segment from
pointl to point2.

* setArrow(string) Sets the arrowhead status of a line.
Arrows may be drawn at either the first point, the last
point, or both. Possible values of string are ’first’, last’,
’both’, and ‘'none’. The default setting is 'none’.

>>> |1=Line(Point(10,10),Point(80,80))
>>> |1.draw(win)

Line Object

>>> |1.setArrow('both’)
itle will appear on the top.... [=][1 K]

>>> |1.setOutline(‘blue’)

>>> |1.setWidth(5)

Circle Objects

* Circle(centerPoint, radius) Constructs a circle with given
center point and radius.

e getCenter() Returns a clone of the center point of the
circle.

* getRadius() Returns the radius of the circle.

>>> c1=Circle(Point(40,40),80) \y

>>> cl.draw(win)
>>> cl.setWidth(5)

Rectangle Object

 Rectangle(pointl, point2) Constructs a rectangle having
opposite corners at pointl and point2.

e getCenter() Returns a clone of the center point of the
rectangle.

>>> r1=Rectangle(Point(80,100),Point(150, 150))

>>> rl.setWidth(5) el
>>> rl.draw(win) \\)&

>>> rl.setOutline('red’)

Oval Object

e Oval(pointl, point2) Constructs an oval in the bounding
box determined by pointl and point?2.

» getCenter() Returns a clone of the point at the center of
the oval.

>>> 01=0val(Point(80,100),Point(150, 150))
>>> 01.setOutline('green’)

>>> 0l.draw(win)
>>> 0l.setWidth(8)

Text Object

Text(anchorPoint, string) Constructs a text object that displays
the given string centered at anchorPoint. The text is displayed
horizontally.

setText(string) Sets the text of the object to string.
getText() Returns the current string.
getAnchor() Returns a clone of the anchor point.

setFace(family) Changes the font face to the given family.
Possible values are: "helvetica’, ‘courier’, ‘times roman’, and
‘arial’.

setSize(point) Changes the font size to the given point size.
Sizes from 5 to 36 points are legal.

setStyle(style) Changes font to the given style. Possible values
are ‘'normal’, ’bold’, ’italic’, and ’bold italic’.

setTextColor(color) Sets the color of the text to color. Note:
setFill has the same effect.

Text Example

>>> t1=Text(Point(100,100),'String on screen')
>>> t].setTextColor('red’)

>>> t1.setStyle('italic’)
>>> t1.draw(win) s il will appear on te fop... 2] = ¢

AN

Strin Sr:me'?
| -

Pixmap Object

Simple image manipulation is done through the Pixmap class. A Pixmap
object allows pixel-level access to an image. Pixmaps allow for saving to a
file and may be displayed using an Image object.

Pixmap(filename) Constructs a Pixmap from the image file, filename.

Pixmap(width, height) Constructs a Pixmap of the given height and
width. Initially, all pixels will be transparent.

getWidth() Returns the width of the image in pixels.
getHeight() Returns the height of the image in pixels.

getPixel(x,y) Returns a triple (r,g,b) of the red, green, and blue intensities
of the pixel at (x,y). Intensity values are in range(256).

setPixel(x,y,color) Color is a triple (r,g,b) representing a color for the pixel.
Sets pixel at (x,y) to the given color.

save(filename) Saves the image in a file having the given name. The
format for the file is determined by the extension on the filename (e.g.
.ppm or .gif).

clone() Returns a copy of the Pixmap.

lmages

The graphics module also provides minimal support for
displaying certain image formats into a GraphWin.

Most platforms will support bitmap, PPM, and GIF images.
Display is done with an Image object.

Images support the generic methods
— move(dx,dy),

— draw(graphwin),

— undraw(), and clone().

Image specific methods are:

— Image(centerPoint, image) image is either the name of an
image file, or a Pixmap object. Constructs an image from
contents of the given file or pixmap, centered at the given
center point.

Reversi with GUI

 \Write reversi or othello on a 8x8 board
 For game rules see
http://en.wikipedia.org/wiki/Reversi

 Game will be played between 2 players, NOT against
computer

* For a simple GUI see the simpleGUI.py

=
g
90000000000 |
0000000000 |
[=]

