ISE 101 — Introduction to Information Systems

* Lecture 6 Objectives:
— Exceptions
— Recursive functions
— Tuples
— Formatted printing

EXCEPTIONS

Exceptions

* Exceptions are typically rare errors that interrupt/stop
the execution of the program

— Divison by zero
— Wrong type of value entered by the user
— Trying to open a file that does not exist
* Handling exceptions is critically important for
— commercial software products
— mission-critical software (healthcare, defence etc.)

Handling Exceptions

In order to handle an exception, the risky code portion
should be written inside a try/except statement

Structure

m: \
statement 1

ctatement 2 } Risky code is placed inside the scope of

statement 3 try

__exception type to be

except [exception typéel: catched
statement 1 If an exception occurs inside the scope
statement 2 L.
of try, statements within the scope of
else: except are executed.

statement 1 . .
statement 2 If no exceptions occur, statements in
\ the scope of else are executed /

Handling Exceptions

'

Exception

statements
after

try-except

statement

Example

~
x=input('Enter an integer: ')
x=int(x)

y
~)

Enter an integer: 3.4
Traceback (most recent call last):
File "None", line 2, in <module>
builtins.ValueError: invalid literal for int() with base 10: '3.4\r'

N

J

Example

-

try:
x=input('Enter an integer: ')
x=int(x)

except ValueError:
print('Entered value should be an integer')

else:
print(str(x) + ' is entered')

"Enter an integer: 3.4
kEntered value should be an integer

(Enter an integer: 5
k5 is entered

Multiple Exceptions

* If there is possibility of many exceptions each can be
handled separately with an appropriate message

- h

try:
Xx=input('Enter an integer: ')
result=10/int(x)
except ValueError:
print('Entered value should be an integer')
except ZeroDivisionError:
print('Enter a nonzero value')
else:
print(str(res))

- /

Error Types

 There are too many error types that can be handled

A comprehensive list is given at
http://docs.python.org/library/exceptions.html

Important Exception Errors

EOFError: Raised when one of the built-in functions
(input() or raw_input()) hits an end-of-file condition
(EOF) without reading any data.

When you ask for an input from the user and user does
not input anything/press enter directly

IOError: Raised when an 1/O operation (such as

a print statement, the built-in open()function or a
method of a file object) fails for an I/O-related reason,
e.g., file not found" or ‘disk full'.

Important Exception Errors

* ImportError: Raised when an import statement fails to
find the module definition or when a from...import fails
to find a name that is to be imported.

* Keyboardinterrupt: Raised when the user hits the
interrupt key (normally Control-C or Delete).

 MemoryError: Raised when an operation runs out of
memory.

e OverflowError: Raised when the result of an arithmetic
operation is too large to be represented.

e ZeroDivisionError: Raised when the second argument of
a division or modulo operation is zero.

Catching All Exceptions

* If no error type is given after except, all exceptions are
catched.

 However, there is no way to know what specifically
happened.

- h

try:
X=input('Enter an integer: ')
result=10/int(x)

except:
print(‘Something went wrong!')

else:
print(str(res))

S y

Common Statements

If there are statements that has to be executed both in
the case exception or no-exceptions, they are placed
under finally statement.

statement 1

statement 2
statement 3

except [exception type]:
statement 1
statement 2

finally:
statement 1 These statements are executed before
k statement 2 leaving try/except block /

Example

ey

f = open('poem.txt')
for line in f:
do something

except:

print('Something went wrong during file IO!')
finally:

f.close()
K print(’' (Cleaning up: Closed the file)')

/

Raising Exceptions

e |tis possible to raise exceptions from your code

* This is typically required if you are writing a library that
will be reused

- N

>>> ralse NameError (‘Message’')

Traceback (most recent call last):
File "<string>", line 1, 1in <fragment>

builtins.NameError: Message

N /

RECURSIVE FUNCTIONS

Recursive Functions

e Recursive functions are a specific type of functions that
calls itself from its body.

e Recursive functions are short however they are hard to
debug

* A recursive function has 3 parts:

— Check for end of the recursion (If this step is skipped
an infinite recursion will continue until stack overflow)

— Processing data, computation etc. (body) and calling
itself

— Return result

Example

e Factorial computation
* nl=n*(n-1)*(n-2)...3.2.1

* nl=n*(n-1)!

ﬁef fact(n):
if n<=1:
return 1

result=n*fact(n-1)

\ return result

Example

* Write a recursive function that takes a string as its
argument and reverses the string

(4

ef reverse_str(string):
if len(string)<=1:
return string

result=reverse_str(string[1:])+string[0]

\ return result

Example

* Write a recursive function that computes the nth
Fibonacci number.

 The Fibonacci numbers are defined as follows: Fib(0) = 1,
Fib(1) = 1, Fib(n) = Fib(n — 1) + Fib(n - 2).

/def fib(number): \
if number<2:
return 1

result=fib(hnumber-1)+fib(number-2)

return result
N /

TUPLES

Tuples

 Tuple is a Python type that holds multiple objects
together

* Tuples are similar to lists
— They have less features compared to lists

— They are immutable: Once formed, they cannot be
modified (like strings)

* Tuples are formed using paranthesis (lists are formed by
square brackets)

* For example:
>>>t=(1.0, 3.4, 'ITU")
>>> type(t)
<class 'tuple'>

Tuples

To create a tuple with a single element (called singleton),
you have to include the final comma:

>>>t1 = ('a’)

>>> type(tl)

<type "tuple’>

Without the comma, Python treats (‘a’) as a string in
parentheses:

>>>12 = ('a’)

>>> type(t2)
<type 'str’>

Tuples

 Another way to create a tuple is the built-in function
tuple. With no argument, it creates an empty tuple:

>>> t = tuple()
>>> print t

()

* If the argument is a sequence (string, list or tuple), the
result is a tuple with the elements of the sequence:

>>> t = tuple(’lupins’)
>>> print t
(II)’ IuI’ Ipl’ Iil’ In)’ ISI)

Tuples

* Most list operators also work on tuples.

 The bracket operator indexes an element:
>>>t=('a’,’'b’, 'c’, 'd’, ‘e’)
>>> print t[0]
o

* And the slice operator selects a range of elements.
>>> print t[1:3]
(b,)

Tuples

But if you try to modify one of the elements of the tuple,
you get an error:

>>> t[0] ="A
TypeError: object doesn’t support item assignment

You can’t modify the elements of a tuple, but you can
replace one tuple with another:

>>>t = ("A)) + t[1:]
>>> print t
(IAI’ IbI’ ICI’ Idl’ Iel)

Tuple assignment

e |tis often useful to swap the values of two variables.

* With conventional assighments, you have to use a
temporary variable.

* For example, to swap a and b:
>>>temp = a
>>>a3=Db
>>> b =temp

e This solution is cumbersome; tuple assignment is more
elegant:
>>>a,b=Db,a

* The left side is a tuple of variables; the right side is a
tuple of expressions.

* Each value is assigned to its respective variable.
>>> t1=tuple(‘ITU')
>>> t2=tuple(‘YTU')
>>> t1,t2=t2,t1
>>> print t1
(YT)U’)
>>> print t2
(‘1',T’,U")

Tuples and Lists

* |If the sequences are not the same length, the result gets
the length of the shorter one.

>>> a=list(zip('ITU','12345'"))
>>> print(a)
[('1, 1), (', '27), (U, '37)]

* You can use tuple assignment to traverse a list of tuples:
for letter,number in a: Each time through the
print(letter, number) loop, Python selects the
| 1 next tuple in the list and
T2 assigns the elements to
U 3 letter and number.

Example

 Write a Python function that takes 2 arguments,
compares the elements of two tuples and returns True if
their corresponding elements have the same value

* For example,
has_match(tl1,t2) should return
— True for t1=(1,2,4) and t2=(4,2,7)
— False for t1(3,4,7) and t2=(2,23,5)

Example

/def has_match(t1,t2):
for el,e2 in zip(t1,t2):
if el==e2:

return True

\ return False

Sorting Tuples

 The comparison operators work with tuples and
other sequences;

e Python starts by comparing the first element from
each sequence.

* |f they are equal, it goes on to the next elements,
and so on, until it finds elements that differ.

e Subsequent elements are not considered (even if
they are really big).

>>> (0, 1,2) < (0, 3, 4)

True

>>> (0, 1, 2000000) < (0, 3, 4)
True

FORMATTED PRINTING

Formatted Output

print (‘<regular expression>’' % (argumentl, argument?2))

>>> print('result: %d'%5)
result: 5 regular

expression

Formatted Output

e Regular expression

%<alignment flag><minimum length>.<precision
length><type>

<type> 2> mandatory field. Shows the type of the output

Formatted Output

'd'" 2 Signed integer decimal

134

— Signed integer decimal.

>>> print ('%d %d' % (4,5))
45

>>> print('%d' % 4.56)

4

>>> print ('%i' % 4.56)

4

>>> print ('%i' % -4.56)

4

>>> print ('%i' % -4.1)

4

Formatted Output

'o' =2 Signed octal value.

>>> print ('%0' % 4)
4

>>> print ('%0' % 14)
16

>>> print ('%0' % 9)
11

>>> print ('%0' % -8)
-10

Formatted Output

'x' -2 Signed hexadecimal (lowercase).
'X' =2 Signed hexadecimal (uppercase).

>>> print('%x' % 15)
f

>>> print ('%x' % -15)
-f

>>> print ('%X' % -15)
F

Formatted Output

'e'’ =2 Floating point exponential format (lowercase).
'E' 2 Floating point exponential format (uppercase).

>>> print('%e’' % -15.34)
-1.534000e+01

>>> print ('%E' % .87324628642434)
8.732463E-01

Formatted Output

'f' - Floating point decimal format.
'F' —2>Floating point decimal format.

>>> print (‘%f' % -15.34)
-15.340000
>>> print ('%F' % -15.34)
-15.340000

Formatted Output

's' = String

>>> print ('Isim: %s'%'Hasan’)

Isim: Hasan

Formatted Output

%<alignment flag><minimum length>.<precision length><type>

Alignment flag:

'0' 2 The conversion will be zero padded for numeric values.

'-' 2 The converted value is left adjusted (overrides the 'O’
conversion if both are given).

"' 2 (a space) A blank should be left before a positive number
(or empty string) produced by a signed conversion.

'+' = A sign character ('+' or '-') will precede the conversion
(overrides a “space” flag).

Formatted Output

%<alignment flag><minimum length>.<precision length><type>
Alignment flag:

>>> print ('%05d'%4)

00004

>>> print('% 5d'%4)
4

>>> print ('%-5d'%4)

4

>>> print ('%+5d'%4)
+4

>>> print ('%+5d'%-4)
-4

Example

* Write print expressions such that the output would look

like:

-~

N

for i in range(5,0,-1):

string="'%"'+str(i)+ 'd\n"
print(string%oi)

N

Example

>>> 1mport math

>>> print (math.p1i)

3.14159265359

Write print expressions such that the output would look

like:
P1i number: 3.1
P1i number: 3.14
P1i number: 3.141
P1i number: 3.1415
P1i number: 3.14159

-~

import math

foriin range(1,6):
exp="'%."'+str(i)+'£\n’
print(exp% math.pi)

_

\

/

