
ISE 101 – Introduction to Information Systems

• Lecture 6 Objectives:

– Exceptions

– Recursive functions

– Tuples

– Formatted printing

EXCEPTIONS

Exceptions

• Exceptions are typically rare errors that interrupt/stop

the execution of the program

– Divison by zero

– Wrong type of value entered by the user

– Trying to open a file that does not exist

– …

• Handling exceptions is critically important for

– commercial software products

– mission-critical software (healthcare, defence etc.)

Handling Exceptions

• In order to handle an exception, the risky code portion

should be written inside a try/except statement

• Structure

try:
statement 1
statement 2
statement 3
...

except [exception type]:
statement 1
statement 2
...

else:
statement 1
statement 2
...

Risky code is placed inside the scope of

try

If an exception occurs inside the scope

of try, statements within the scope of

except are executed.

exception type to be

catched

If no exceptions occur, statements in

the scope of else are executed

Handling Exceptions

Example

x=input('Enter an integer: ')

x=int(x)

Enter an integer: 3.4

Traceback (most recent call last):

File "None", line 2, in <module>

builtins.ValueError: invalid literal for int() with base 10: '3.4\r'

Example

try:
x=input('Enter an integer: ')

x=int(x)
except ValueError:

print('Entered value should be an integer')

else:
print(str(x) + ‘ is entered')

Enter an integer: 3.4

Entered value should be an integer

Enter an integer: 5

5 is entered

Multiple Exceptions

• If there is possibility of many exceptions each can be

handled separately with an appropriate message

try:
x=input('Enter an integer: ')

result=10/int(x)
except ValueError:

print('Entered value should be an integer')

except ZeroDivisionError:
print('Enter a nonzero value')

else:
print(str(res))

Error Types

• There are too many error types that can be handled

• A comprehensive list is given at

http://docs.python.org/library/exceptions.html

Important Exception Errors

• EOFError: Raised when one of the built-in functions

(input() or raw_input()) hits an end-of-file condition

(EOF) without reading any data.

When you ask for an input from the user and user does

not input anything/press enter directly

• IOError: Raised when an I/O operation (such as

a print statement, the built-in open()function or a

method of a file object) fails for an I/O-related reason,

e.g., ``file not found'' or ``disk full''.

Important Exception Errors

• ImportError: Raised when an import statement fails to

find the module definition or when a from...import fails

to find a name that is to be imported.

• KeyboardInterrupt: Raised when the user hits the

interrupt key (normally Control-C or Delete).

• MemoryError: Raised when an operation runs out of

memory.

• OverflowError: Raised when the result of an arithmetic

operation is too large to be represented.

• ZeroDivisionError: Raised when the second argument of

a division or modulo operation is zero.

Catching All Exceptions

• If no error type is given after except, all exceptions are

catched.

• However, there is no way to know what specifically

happened.

try:
x=input('Enter an integer: ')

result=10/int(x)
except:

print(‘Something went wrong!')

else:
print(str(res))

Common Statements

• If there are statements that has to be executed both in

the case exception or no-exceptions, they are placed

under finally statement.

try:
statement 1
statement 2
statement 3
...

except [exception type]:
statement 1
statement 2
...

finally:
statement 1
statement 2
...

These statements are executed before

leaving try/except block

Example

try:

f = open('poem.txt')

for line in f:

do something

except:

print('Something went wrong during file IO!')

finally:

f.close()

print('(Cleaning up: Closed the file)')

Raising Exceptions

• It is possible to raise exceptions from your code

• This is typically required if you are writing a library that

will be reused

>>> raise NameError(‘Message')

Traceback (most recent call last):

File "<string>", line 1, in <fragment>

builtins.NameError: Message

RECURSIVE FUNCTIONS

Recursive Functions

• Recursive functions are a specific type of functions that

calls itself from its body.

• Recursive functions are short however they are hard to

debug

• A recursive function has 3 parts:

– Check for end of the recursion (If this step is skipped

an infinite recursion will continue until stack overflow)

– Processing data, computation etc. (body) and calling

itself

– Return result

Example

• Factorial computation

• n!=n*(n-1)*(n-2)…3.2.1

• n!=n*(n-1)!

def fact(n):

if n<=1:

return 1

result=n*fact(n-1)

return result

Example

• Write a recursive function that takes a string as its

argument and reverses the string

def reverse_str(string):
if len(string)<=1:

return string

result=reverse_str(string[1:])+string[0]

return result

Example

• Write a recursive function that computes the nth

Fibonacci number.

• The Fibonacci numbers are defined as follows: Fib(0) = 1,

Fib(1) = 1, Fib(n) = Fib(n − 1) + Fib(n − 2).

def fib(number):
if number<2:

return 1

result=fib(number-1)+fib(number-2)

return result

TUPLES

Tuples

• Tuple is a Python type that holds multiple objects
together

• Tuples are similar to lists

– They have less features compared to lists

– They are immutable: Once formed, they cannot be
modified (like strings)

• Tuples are formed using paranthesis (lists are formed by
square brackets)

• For example:

>>> t = (1.0, 3.4, 'ITU')

>>> type(t)

<class 'tuple'>

Tuples

• To create a tuple with a single element (called singleton),
you have to include the final comma:

>>> t1 = (’a’,)

>>> type(t1)

<type ’tuple’>

• Without the comma, Python treats (’a’) as a string in
parentheses:

>>> t2 = (’a’)

>>> type(t2)

<type ’str’>

Tuples

• Another way to create a tuple is the built-in function
tuple. With no argument, it creates an empty tuple:

>>> t = tuple()

>>> print t

()

• If the argument is a sequence (string, list or tuple), the
result is a tuple with the elements of the sequence:

>>> t = tuple(’lupins’)

>>> print t

(’l’, ’u’, ’p’, ’i’, ’n’, ’s’)

Tuples

• Most list operators also work on tuples.

• The bracket operator indexes an element:

>>> t = (’a’, ’b’, ’c’, ’d’, ’e’)

>>> print t[0]

’a’

• And the slice operator selects a range of elements.

>>> print t[1:3]

(’b’, ’c’)

Tuples

• But if you try to modify one of the elements of the tuple,

you get an error:

>>> t[0] = ’A’

TypeError: object doesn’t support item assignment

• You can’t modify the elements of a tuple, but you can

replace one tuple with another:

>>> t = (’A’,) + t[1:]

>>> print t

(’A’, ’b’, ’c’, ’d’, ’e’)

Tuple assignment

• It is often useful to swap the values of two variables.

• With conventional assignments, you have to use a
temporary variable.

• For example, to swap a and b:
>>> temp = a

>>> a = b

>>> b = temp

• This solution is cumbersome; tuple assignment is more
elegant:
>>> a, b = b, a

• The left side is a tuple of variables; the right side is a
tuple of expressions.

• Each value is assigned to its respective variable.

>>> t1=tuple(‘ITU')

>>> t2=tuple(‘YTU')

>>> t1,t2=t2,t1

>>> print t1

(‘Y’,’T’,’U’)

>>> print t2

(‘I’,’T’,’U’)

Tuples and Lists

• If the sequences are not the same length, the result gets
the length of the shorter one.

>>> a=list(zip('ITU','12345'))

>>> print(a)

[('I', '1'), ('T', '2'), ('U', '3')]

• You can use tuple assignment to traverse a list of tuples:

for letter,number in a:

print(letter , number)

I 1

T 2

U 3

Each time through the

loop, Python selects the

next tuple in the list and

assigns the elements to

letter and number.

Example

• Write a Python function that takes 2 arguments,

compares the elements of two tuples and returns True if

their corresponding elements have the same value

• For example,

has_match(t1,t2) should return

– True for t1=(1,2,4) and t2=(4,2,7)

– False for t1(3,4,7) and t2=(2,23,5)

Example

def has_match(t1,t2):

for e1,e2 in zip(t1,t2):

if e1==e2:

return True

return False

Sorting Tuples

• The comparison operators work with tuples and
other sequences;

• Python starts by comparing the first element from
each sequence.

• If they are equal, it goes on to the next elements,
and so on, until it finds elements that differ.

• Subsequent elements are not considered (even if
they are really big).
>>> (0, 1, 2) < (0, 3, 4)

True

>>> (0, 1, 2000000) < (0, 3, 4)

True

FORMATTED PRINTING

Formatted Output

print (‘<regular expression>’ % (argument1, argument2))

>>> print ('result: %05d'%5)

result: 00005

>>> print('result: %d'%5)

result: 5

argument

regular

expression

Formatted Output

• Regular expression

%<alignment flag><minimum length>.<precision

length><type>

<type> � mandatory field. Shows the type of the output

Formatted Output

'd' ���� Signed integer decimal

'i‘ ���� Signed integer decimal.

>>> print ('%d %d' % (4,5))

4 5

>>> print('%d' % 4.56)

4

>>> print ('%i' % 4.56)

4

>>> print ('%i' % -4.56)

-4

>>> print ('%i' % -4.1)

-4

Formatted Output

'o' ���� Signed octal value.

>>> print ('%o' % 4)

4

>>> print ('%o' % 14)

16

>>> print ('%o' % 9)

11

>>> print ('%o' % -8)

-10

Formatted Output

'x' ���� Signed hexadecimal (lowercase).

'X' ���� Signed hexadecimal (uppercase).

>>> print('%x' % 15)

f

>>> print ('%x' % -15)

-f

>>> print ('%X' % -15)

-F

Formatted Output

'e' ���� Floating point exponential format (lowercase).

'E' ���� Floating point exponential format (uppercase).

>>> print('%e' % -15.34)

-1.534000e+01

>>> print ('%E' % .87324628642434)

8.732463E-01

Formatted Output

'f' ���� Floating point decimal format.

'F' ����Floating point decimal format.

>>> print ('%f' % -15.34)

-15.340000

>>> print ('%F' % -15.34)

-15.340000

Formatted Output

's' � String

>>> print ('Isim: %s'%'Hasan‘)

Isim: Hasan

Formatted Output

%<alignment flag><minimum length>.<precision length><type>

Alignment flag:

'0' �The conversion will be zero padded for numeric values.

'-' � The converted value is left adjusted (overrides the '0'

conversion if both are given).

' ' � (a space) A blank should be left before a positive number

(or empty string) produced by a signed conversion.

'+' � A sign character ('+' or '-') will precede the conversion

(overrides a “space” flag).

Formatted Output

%<alignment flag><minimum length>.<precision length><type>

Alignment flag:

>>> print ('%05d'%4)

00004

>>> print('% 5d'%4)

4

>>> print ('%-5d'%4)

4

>>> print ('%+5d'%4)

+4

>>> print ('%+5d'%-4)

-4

Example

• Write print expressions such that the output would look

like:

5

4

3

2

1

for i in range(5,0,-1):
string='%'+str(i)+'d\n'

print(string%i)

Example

>>> import math

>>> print(math.pi)

3.14159265359

Write print expressions such that the output would look

like:

Pi number: 3.1

Pi number: 3.14

Pi number: 3.141

Pi number: 3.1415

Pi number: 3.14159

import math

for i in range(1,6):
exp='%.'+str(i)+'f\n'

print(exp%math.pi)

