
ISE 101 – Introduction to Information Systems

• Lecture 5 Objectives:

– Functions

– File I/O

FUNCTIONS

Functions

• Programs we have seen until now has a single body

• Most programs have to repeat the same procedure with

different arguments

• functions are used:

– Code reuse:

The function is added to the software library.

It is used later in other codes

– Code maintenance

Codes that are not well-written are very hard to

maintain.

Functions

• You should not write the same piece of code many times

scattered in the program (code dublication)

– Hard to maintain

– Larger and inpractical code

– Hard to make changes

• The part of the program that implements a function is

called a function definition

• When a function is subsequently used in a program, the

function is called or invoked

Example

• Write a Python script that computes the average grade for

student midterms

– If midterm 1 grade is greater than 50 ,the average should

be computed as

average grade = 0.2*midterm 1+0.3*midterm 2+0.5*final

– If midterm 1 grade is less than or equal to 50 and midterm

2 grade is greater than 50, the average grade should be

computed as

average grade = 0.3*midterm 1+0.3*midterm 2+0.4*final

– Otherwise, the average grade should be computed as

average grade = 0.4*midterm 1+0.3*midterm 2+0.3*final

Implementation 1

if midterm1_grade>50:
average_grade=0.2*midterm1_grade \

+ 0.3*midterm2_grade + 0.5*final_grade
elif midterm1_grade<=50 and midterm2_grade>50:
average_grade=0.3*midterm1_grade \

+ 0.3*midterm2_grade + 0.4*final_grade
else:
average_grade=0.4*midterm1_grade \

+ 0.3*midterm2_grade + 0.2*final_grade

print(average_grade)

Implementation 1

• Grade averaging is used many times at different exercises

• Instead of writing the average equation each time, a

function should be used.

• The arguments of the function should be

– Exam grades

– Grade weights

Implementation 2

def average_grade(midterm1_grade, weight1,
midterm2_grade, weight2, final_grade, weight3):

average_grade=weight1*midterm1_grade \
+ weight2*midterm2_grade + weight3*final_grade

print(average_grade)

if midterm1_grade>50:

average_grade(midterm1_grade,0.2,midterm2_grade,0.3,

final_grade,0.5)

elif midterm1_grade<=50 and midterm2_grade>50:

average_grade(midterm1_grade,0.3,midterm2_grade,0.3,

final_grade,0.4)

else:

average_grade(midterm1_grade,0.4,midterm2_grade,0.3,

final_grade,0.3)

Function Definition

• Structure of function definition

def function_name(arg1, arg2, …):
statement 1
statement 2
statement 3

Scope of the function definition

columnTabs

Functions

• Functions can be called by simply writing their name and

arguments inside parenthesis

average_grade(midterm1_grade,0.2,midterm2_grade,0.3,

final_grade,0.5)

function name
arguments

Functions

• The idea of the functions is to repeat the same procedure

with different parameters

• Therefore, functions can take parameters (or arguments)

• These parameters are defined in the function definition

• In this example,

name is the first argument

age is the second argument

def myFunction(name,age):
print("Welcome ",name)
print("Next year you will be: " + str(age+1)

+ "years old.")

Functions

• When Python calls a function

– The calling program suspends execution at the point of

the call

– Function arguments are passed to the function

– The scope of the function is executed

– Control returns to the point just after where the

function was called

Functions

• To call the function, the arguments have to be given in

the correct order

>>> myFunction('Ali',13)

Welcome Ali

Next year you will be: 14years old.

>>> myFunction(13,'Ali')

Welcome 13

Traceback (most recent call last):

builtins.TypeError: Can't convert 'int'

object to str implicitly

Functions

• Function has to be called with the exact number of

arguments that are used in the definition

>>> myFunction('Ali',5)

Welcome Ali

Next year you will be: 6 years old.

>>> myFunction('Ali',5,3)

Traceback (most recent call last):

File "<string>", line 1, in <fragment>

builtins.TypeError: myFunction() takes

exactly 2 positional arguments (3 given)

Argument Passing

• Pass by value:

– local copy of the variable is generated and sent to the

function

– If the local copy is changed within the function, the

variable is not changed outside the scope of the

function

Pass by Value

def increment(x):
print('incoming x: ' + str(x))

x=x+1
print('changed x: ' + str(x))

x=5
print('before function call x: ' + str(x))

increment(x)
print('after function call x: ' + str(x))

before function call x: 5

incoming x: 5

changed x: 6

after function call x: 5

Argument Passing

• Pass by reference:

– local copy of the pointer is generated and sent to the

function

– Location that it points can be changed

0 1 2 3

3.0 3.4 3.6 5.6

local copy of

list_variable

list_variable

Pass by Reference

def increment(x):
print('incoming x: ' + str(x))

for i in range(len(x)):
x[i]=x[i]+1

print('changed x: ' + str(x))

x=[1, 2, 4]
print('before function call x: ' + str(x))

increment(x)
print('after function call x: ' + str(x))

before function call x: [1, 2, 4]

incoming x: [1, 2, 4]

changed x: [2, 3, 5]

after function call x: [2, 3, 5]

Pass by Value

def increment(x):
print('incoming x: ' + str(x))

x=[2,3,5]
for i in range(len(x)):
x[i]=x[i]+1

print('changed x: ' + str(x))

x=[1, 2, 4]
print('before function call x: ' + str(x))

increment(x)
print('after function call x: ' + str(x))

before function call x: [1, 2, 4]

incoming x: [1, 2, 4]

changed x: [3, 4, 6]

after function call x: [1, 2, 4]

• In the beginning of the function

0 1 2

1 2 4

local copy of

list_variable

list_variable

• After x=[2,3,5] in the function

0 1 2

1 2 4

local copy of

list_variable

list_variable

0 1 2

2 3 5

• After the for loop in the function

0 1 2

1 2 4

local copy of

list_variable

list_variable

0 1 2

3 4 6

Return Values

• Sometimes the functions produce results

• These results can be returned to the code that calls the

function

• “return” expression is used to return value

• Contrary to other programming languages Python can

return more than one value

Return Value

def power(val,exp):
result=1
for i in range(exp):
result=result*val

return result

x=power(2,8)
print(x)

Returning Multiple Values

• Functions can return multiple values that are separated

by commas

• return val1, val2, val3, …

def add_subtract(x1,x2):
sum=x1+x2
dif=x1-x2
return sum,dif

x,y=add_subtract(3,4)
print(x)
print(y)

Returning Multiple Values

• If a function returns multiple values, the returning values

should be assigned to the exactly same number of

parameters

def add_subtract(x1,x2):
sum=x1+x2
dif=x1-x2
return sum,dif

x=add_subtract(3,4)
x,y,z=x=add_subtract(3,4) Error

x will be a

tuple

“global” Statement

• If you do not want to use the local value of a variable,

“global” statement is used

• When “global” is used for a variable within a function, its

value that is assigned outside the scope is used

x = 50
def func():

global x
print('x is', x)

x = 2
print('Changed global x to', x)

func()
print('Value of x is', x)

“global” Statement

x = 50
def func():

global x
print('x is', x)

x = 2
print('Changed global x to', x)

func()
print('Value of x is', x)

x is 50

Changed global x to 2

Value of x is 2

“global” Statement

• Do NOT use “global”

• It is a not a good programming practice

• Functions with “global” statement cannot be reused

• Functions are used for code reusability

• “global” contradicts with philosophy of functions and

code reusability

“nonlocal” Statement

• “nonlocal” statement uses the variable in the outer scope

• “global” and “nonlocal” are not the same

– “global” has a single and global scope

– “nonlocal” uses the variable that is outside the local

scope

Example

def func_outer():

x = 2

print('x is', x)

def func_inner():

x = 5

func_inner()

print('Changed local x to' + str(x))

x=7

func_outer()

print('Value of x: ' + str(x))

x is 2

Changed local x to 2

Value of x: 7

Example
def func_outer():

x = 2

print('x is', x)

def func_inner():

global x

x = 5

func_inner()

print('Changed local x to ' + str(x))

x=7

func_outer()

print('Value of x: ' + str(x))

x is 2

Changed local x to 2

Value of x: 5

Example
def func_outer():

x = 2

print('x is', x)

def func_inner():

nonlocal x

x = 5

func_inner()

print('Changed local x to ' + str(x))

x=7

func_outer()

print('Value of x: ' + str(x))

x is 2

Changed local x to5

Value of x: 7

Default Argument Values

• Some of the arguments can be assigned default values

• If a default value is assigned to a variable, that argument

becomes optional

– If the argument is not sent to the function, the default

value of the argument is used

– If the argument is sent, this value is used

• The default value should be immutable

• Default arguments should be placed after other (non

default) arguments

Example

def func(a, b=3, c=10):

print('a is ' + str(a))

print('b is ' + str(b))

print('c is ' + str(c))

func(1, 5, 7)

a is 1

b is 5

c is 7

Example

def func(a, b=3, c=10):

print('a is ' + str(a))

print('b is ' + str(b))

print('c is ' + str(c))

func(6)

a is 6

b is 3

c is 10

Example

def func(a, b=3, c=10):

print('a is ' + str(a))

print('b is ' + str(b))

print('c is ' + str(c))

func(6,7)

a is 6

b is 7

c is 10

Example

• Write a Python function (not a script) named

“inner_product” that takes 2 lists as arguments and

returns their inner product.

def inner_product(x1,x2):
sum = 0
if len(x1)!=len(x2):

print("Warning: lists have different lengths")

return 0

for i in range(len(x1)):
sum=sum+x1[i]*x2[i]

return sum

Example

def inner_product(x1,x2):

sum = 0

if len(x1)!=len(x2):

print("Warning: lists have different lengths")

return 0

for i in range(len(x1)):

sum=sum+x1[i]*x2[i]

return sum

t1=[1,1,1]

t2=[2,3,6]

print(inner_product(t1,t2))

Example

• Write a Python function named “find_max” that takes a

list as argument and returns the maximum value within

this list.

def find_max(x):
max_value=x[0];
for i in range(1,len(x)):

if x[i]>max_value:
max_value=x[i]

return max_value

t2=[2,3,6]
print(find_max(t2))

Example

• Write a Python function named “convert_seconds” that

takes the number of seconds as argument and returns

the equivalent hour/minute/second.

def convert_seconds(nseconds):
nhours=int(nseconds/3600)
tmp=nseconds%3600
nminutes=int(tmp/60)
nseconds=residue%60

return nhours,nminutes,nseconds

nseconds=123213
h,m,s=convert_seconds(nseconds)

print(str(nseconds) + ' seconds = ' + str(h)
+':'+str(m)+':'+str(s))

FILE I/O

File IO

• Frequently data should be read from a file on the hard

drive

• Results should be written to a file in the hard drive

• File input/output is important

File IO

• A file is a sequence of data that is stored in disk

• Files can contain any data type

• Text-files contain text. They can be thought as a long
string (of many lines)

• Files have a special characters to denote the end of lines
and end of file

• These special characters help us to parse the files

• Different programming languages have nearly the same
concept of file processing

– Files are opened using a mode (read, write, append)

– Data in the file is processed

– Files are closed

File IO

• File open

<filevar>=open(<filename>,<mode>)

• filevar is a handle that will be used for further file
operations such as reading/writing etc.

• filename is the name of the file on OS

• mode is a string

– “r” for reading

– “w” for writing

• If no mode is given, default mode is “r”

• When the file processing is finished, close it

<filevar>.close()

• What happens if a file is not closed?

File IO

• Some simple functions for reading files

<filevar>.read() returns the entire remaining

contents of the file as a single

string

<filevar>.readline() returns the next line of the file.

That is all text up to and including

the newline character

<filevar>.readlines() returns a list of the remaining

lines in the file. Each list item is a

single line including the newline

character at the end

File IO

• <filevar>.read() may lead to very long strings which will
be stored on the memory of the computer.

• This may slow down the computer

• You should prefer reading a file line-by-line and process
each line seperately

• What does this code do?

>>> infile=open(“list.txt”,”r”)

>>> for i in range(5):

line=infile.readline()

print line[:-1]

>>> infile.close()

File IO

• Python treats the file as a sequence of lines. Looping

through the lines of a file can be done directly as:

>>> infile=open(“list.txt”,”r”)

>>> for lines in infile:

print lines[:-1]

>>> infile.close()

File IO

• Opening a file for writing prepares that file for receiving

data.

• If file does not exist, it is created

• If the file exists, it is DELETED

• Opening a file for writing

<filevar>=open(<filename>,”w”)

• Data can be written into the file as

<filevar>.write(<string>)

• write function is similar to print. But it is not as flexible

– takes a single string argument

– new line should be explicitly provided

File IO

• What does this code do?

>>> ofp=open('list.txt','w')

>>> ofp.write('First line\n')

>>> for i in range(10):

ofp.write('this is line %d\n' % i)

>>> ofp.close()

• Output

First line

this is line 0

this is line 1

this is line 2

this is line 3

this is line 4

this is line 5

this is line 6

this is line 7

this is line 8

this is line 9

Example

this is a comment line discard this line

records start from here

04001020 ; Ali Gel; 20 ; 34; 100

04001032 ; Veli Git; 36 ; 23; 57

04002123 ; Ferhat Can; 44 ; 46 ;90

• Any line starting with a “#” is a comment line, your

program should not process these lines

• Each record has 5 fields: student number, student name

and surname,

• midterm 1 grade, midterm 2 grade, final exam grade.

• Fields are separated with semicolons.

Example

• Total grade is computed as

– %25 from midterm 1

– %35 from midterm 2

– %40 from final exam

• Read these records from the given file

• Compute and display the

– average grade of midterm 1

– average grade of midterm 2

– average grade of final exam

ifp=open('file.txt','r')

def find_average(grades):
return(sum(grades)/len(grades))

midterm1_grades=[]
midterm2_grades=[]
final_grades=[]
for line in ifp:

if line[0]==‘#’:

continue
info=line.split(";");

midterm1_grades.append(int(info[2]))
midterm2_grades.append(int(info[3]))
final_grades.append(int(info[4]))

print('Avg for midterm 1:'+str(find_average(midterm1_grades)))
print(‘Avg for midterm 2:'+ str(find_average(midterm2_grades)))
print('Avg for final: ' + str(find_average(final_grades)))

ifp.close()

Example

• Write a Python script that reads a file, replaces each

newline with double newlines and writes the output to

another file

ifp=open('file.txt','r')
ofp=open('output.txt','w')

for line in ifp:
ofp.write(line)
ofp.write('\n')

ifp.close()
ofp.close()

