ISE 101 — Introduction to Information Systems

e Lecture 5 Objectives:
— Functions
— File I/O

FUNCTIONS

Functions

 Programs we have seen until now has a single body

 Most programs have to repeat the same procedure with
different arguments

e functions are used:
— Code reuse:
The function is added to the software library.
It is used later in other codes
— Code maintenance

Codes that are not well-written are very hard to
maintain.

Functions

* You should not write the same piece of code many times
scattered in the program (code dublication)

— Hard to maintain
— Larger and inpractical code
— Hard to make changes

 The part of the program that implements a function is
called a function definition

 When a function is subsequently used in a program, the
function is called or invoked

Example

* Write a Python script that computes the average grade for
student midterms

— |If midterm 1 grade is greater than 50 ,the average should
be computed as

average grade = 0.2*midterm 1+0.3*midterm 2+0.5*final

— |If midterm 1 grade is less than or equal to 50 and midterm
2 grade is greater than 50, the average grade should be
computed as

average grade = 0.3*midterm 1+0.3*midterm 2+0.4*final
— Otherwise, the average grade should be computed as
average grade = 0.4*midterm 1+0.3*midterm 2+0.3*final

Implementation 1

if midterm1_grade>50:
average_grade=0.2*midterml_grade
+ 0.3*midterm2_grade + 0.5*final_grade
elif midterml1l_grade<=50 and midterm2_grade>50:
average_grade=0.3*midterml_grade
+ 0.3*midterm2_grade + 0.4*final_grade
else:
average_grade=0.4*midterml_grade
+ 0.3*midterm2_grade + 0.2*final_grade

print(average_grade)

.

Implementation 1

* Grade averaging is used many times at different exercises

* |Instead of writing the average equation each time, a
function should be used.

 The arguments of the function should be
— Exam grades
— Grade weights

Implementation 2

def average_grade(midterml1_grade, weightl,
midterm2_grade, weight2, final_grade, weight3):
average_grade=weightl*midterml1_grade
+ weight2*midterm2_grade + weight3*final_grade
print(average_grade)

"

émidterml_grade>50:
average_grade(midterm1_grade,0.2,midterm2_grade,0.3,
final_grade,0.5)
elif midterml1l_grade<=50 and midterm2_grade>50:
average_grade(midterm1_grade,0.3,midterm2_grade,0.3,
final_grade,0.4)
else:
average_grade(midterm1_grade,0.4,midterm2_grade,0.3,

\ final_grade,0.3)

AN

Function Definition

e Structure of function definition

/ Tabs

statement 1

statement 2
statement 3

N

/ column
d%ction_nam_e(argl, arg2, ...):

L Scope of the function definition

=

N

/‘

Functions

* Functions can be called by simply writing their name and
arguments inside parenthesis

/ function name arg/uments \‘

average_grade(midterm1_grade,0.2,midterm2_grade,0.3,
final_grade,0.5)

I\ /

Functions

 The idea of the functions is to repeat the same procedure
with different parameters

* Therefore, functions can take parameters (or arguments)
* These parameters are defined in the function definition

- N
def myFunction(name,age):
print("welcome ",name)
print("Next year you will be: " + str(age+1)
+ "years old.")

- /‘

* |n this example,

name is the first argument
age is the second argument

Functions

e When Python calls a function

— The calling program suspends execution at the point of
the call

— Function arguments are passed to the function
— The scope of the function is executed

— Control returns to the point just after where the
function was called

Functions

e To call the function, the arguments have to be given in
the correct order

-

>>> myFunction('Ali',13)

Welcome Ali

Next year you will be: 1l4dyears old.

>>> myFunction (13, "Ali")

Welcome 13

Traceback (most recent call last):
builtins.TypeError: Can't convert 'int'

\\i?ject to str implicitly

N

j

Functions

-

Function has to be called with the exact number of

arguments that are used in the definition

>>> myFunction('Al1',5)
Welcome Alil
Next year you will be: 6 years old.
>>> myFunction('Ali',5,3)
Traceback (most recent call last):
File "<string>", line 1, 1in <fragment>
builtins.TypeError: myFunction() takes

\\ifactly 2 positional arguments (3 given)

N

j

Argument Passing

e Pass by value:
— local copy of the variable is generated and sent to the
function

— If the local copy is changed within the function, the
variable is not changed outside the scope of the
function

Pass by Value

ﬁef increment(x):
print('incoming x: ' + str(x))
Xx=x+1

print('changed x: ' + str(x))

X=5

print('before function call x: ' + str(x))
increment(x)

print('after function call x: ' + str(x))

before function call x: 5
incoming x: 5

changed x: ©

after function call x: 5

-

Argument Passing

e Pass by reference:

— local copy of the pointer is generated and sent to the
function

— Location that it points can be changed

list_variable

q o | | 2 | 3
> 3.0 3.4 3.6 5.6

local copy of
list_variable

Pass by Reference

‘7def increment(x):

print('incoming x: ' + str(x))

for i in range(len(x)):
x[i]=x[i]+1

print('changed x: ' + str(x))

x=[1, 2, 4]
print('before function call x: ' + str(x))

increment(x)
&rint('after function call x: ' + str(x))

before function call x: [1, 2, 4]
incoming x: [1, 2, 4]

changed x: [2, 3, 5]

after function call x: [2, 3, 5]

-

Pass by Value

We.f increment(x):

print('incoming x: ' + str(x))

x=[2,3,5]

for i in range(len(x)):
x[i]=x[i]+1

print('changed x: ' + str(x))

x=[1, 2, 4]
print('before function call x: ' + str(x))

increment(x)
Nint('after function call x: ' + str(x))

before function call x: [1, 2, 4]
incoming x: [1, 2, 4]
changed x: [3, 4, 6]
after function call x: [1, 2, 4]

-

* |n the beginning of the function

list_variable

>
>

local copy of
list_variable

1 2

4

o After Xx=[2,3,5] in the function

list_variable

>
1 2 4

I
local copy of

list_variable

e After the for loop in the function

list_variable

>
1 2 4

I
local copy of

list_variable

Return Values

 Sometimes the functions produce results

e These results can be returned to the code that calls the
function

* “return” expression is used to return value

e Contrary to other programming languages Python can
return more than one value

Return Value

@

def power(val,exp):
result=1
for i in range(exp):
result=result*val
f return resulit

x=power(2,8)
print(x)

Returning Multiple Values

e Functions can return multiple values that are separated
by commas

* returnvall, val2, val3, ...

'/def add_subtract(x1,x2): \'

sum=x1+x2
dif=x1-x2
return sum,dif

x,yMct(BA)

print(x)

‘\print(y) /

Returning Multiple Values

* If a function returns multiple values, the returning values
should be assigned to the exactly same number of
parameters

s N

def add_subtract(x1,x2):
sum=x1+x2

dir=x1-x2 x will be a
return sum,dif
tuple
x=add_subtract(3,4)
x,y,z=x=add_subtract(3,4) <€ Error

/‘

I”

“global” Statement

* |If you do not want to use the local value of a variable,
“slobal” statement is used

 When “global” is used for a variable within a function, its
value that is assigned outside the scope is used

/- 50 R

def func():
global x
print('x is', X)
X =2
print('Changed global x to', X)

func()

I print('value of x is', X)

III

“global” Statement

(o=

def func():
global x
print('x is', Xx)
X =2
print('Changed global x to', X)

func()
\pl‘int('Value of x is', X)

-

x 1s 50
Changed global x to 2

Value of x 1s 2

N\

AN

III

“global” Statement

e Do NOT use “global”
e |tis anotagood programming practice

I”

e Functions with “global” statement cannot be reused

* Functions are used for code reusability
|I)

e “global” contradicts with philosophy of functions and
code reusability

I)I

“nonlocal” Statement

* “nonlocal” statement uses the variable in the outer scope
e “global” and “nonlocal” are not the same
— “global” has a single and global scope

— “nonlocal” uses the variable that is outside the local
scope

Example

@‘ func_outer():

X =2
print('x is', Xx)
def func_inner():
X=05
func_inner()
print('Changed local x to' + str(x))

x=7

func_outer()
wnt('Value of x: ' + str(x))

-

\

X 1s 2
Changed local x to 2

Value of x: 7

Example

ﬁ func_outer():
X =2

print('x is', Xx)
def func_inner():
global x
X=05
func_inner()
print('Changed local x to ' + str(x))

x=7
func_outer()
rint('value of x: ' + str(x))
s
X 1s 2

Changed local x to 2

Value of x: 5
_

Example

ﬁ func_outer():
X =2

print('x is', Xx)
def func_inner():
nonlocal x
XxX=5
func_inner()
print('Changed local x to ' + str(x))

x=7
func_outer()
rint('value of x: ' + str(x))
s
X 1s 2

Changed local x tob

Value of x: 7

\

Default Argument Values

 Some of the arguments can be assigned default values

If a default value is assigned to a variable, that argument
becomes optional

— If the argument is not sent to the function, the default
value of the argument is used

— If the argument is sent, this value is used

The default value should be immutable

Default arguments should be placed after other (non
default) arguments

Example

/

def func(a, b=3, c=10):
print('a is ' + str(a))
print('b is ' + str(b))
print('c is ' + str(c))

func(1, 5, 7)

&

-

a is 1
b is 5

c 1is 7

J

Example

/

def func(a, b=3, c=10):
print('a is ' + str(a))
print('b is ' + str(b))
print('c is ' + str(c))

func(6)

&

-

a 1s 6
b is 3

c i1is 10

J

Example

/

def func(a, b=3, c=10):
print('a is ' + str(a))
print('b is ' + str(b))
print('c is ' + str(c))

func(6,7)

&

-

a 1s 6
b is 7

c i1is 10

J

Example

* Write a Python function (not a script) named
“inner_product” that takes 2 lists as arguments and
returns their inner product.

/def inner_product(x1,x2): \’

sum = 0

if len(x1)!'=len(x2):
print("Warning: lists have different lengths")
return O

fori in range(len(x1)):
sum=sum+=+x1[i]*x2[i]

N return sum /‘

Example

@inner_product(xl,xZ): \
sum =0

if len(x1)!=len(x2):
print("Warning: lists have different lengths")
return 0

foriin range(len(x1)):
sum=sum+=+x1[i]*x2[i]

return sum

t1=[1,1,1]

t2=[2,3,6]
wt(inner_product(tl1,t2)) /

Example

* Write a Python function named “find_max” that takes a
list as argument and returns the maximum value within
this list.

Iﬂef find_max(x): \1

max_value=x[0];
for i in range(1,len(x)):
if x[i]>max_value:
max_value=x[i]

return max_value

t2=[2,3,6]

Mint(find_max(t2)) A

Example

* Write a Python function named “convert_seconds” that
takes the number of seconds as argument and returns
the equivalent hour/minute/second.

ﬁf convert_seconds(nseconds): \1

nhours=int(nseconds/3600)

tmp=nseconds% 3600

nminutes=int(tmp/60)
nseconds=residue®%60

return nhours,nminutes,nseconds

nseconds=123213
h,m,s=convert_seconds(nseconds)

print(str(nseconds) + ' seconds = ' + str(h)
+':'+str(m)+':'+str(s))

FILE 1/O

File 10O

* Frequently data should be read from a file on the hard
drive

e Results should be written to a file in the hard drive
* File input/output is important

File 10O

A file is a sequence of data that is stored in disk
Files can contain any data type

Text-files contain text. They can be thought as a long
string (of many lines)

Files have a special characters to denote the end of lines
and end of file

These special characters help us to parse the files

Different programming languages have nearly the same
concept of file processing

— Files are opened using a mode (read, write, append)
— Data in the file is processed
— Files are closed

File 10O

File open
<filevar>=open(<filename>,<mode>)

filevar is a handle that will be used for further file
operations such as reading/writing etc.

filename is the name of the file on OS
mode is a string

— “r” for reading

— “w” for writing

If no mode is given, default mode is
When the file processing is finished, close it
<filevar>.close()

What happens if a file is not closed?

o7
r

File 10O

 Some simple functions for reading files

<filevar>.read()

<filevar>.readline()

<filevar>.readlines()

returns the entire remaining
contents of the file as a single
string

returns the next line of the file.
That is all text up to and including
the newline character

returns a list of the remaining
lines in the file. Each list item is a
single line including the newline
character at the end

File 10O

e <filevar>.read() may lead to very long strings which will
be stored on the memory of the computer.

* This may slow down the computer

* You should prefer reading a file line-by-line and process
each line seperately

 What does this code do?
>>> infile=open(“list.txt”,’r”)
>>> for i in range(5):
line=infile.readline()
print line[:-1]
>>> infile.close()

File 10O

Python treats the file as a sequence of lines. Looping
through the lines of a file can be done directly as:

>>> infile=open(“list.txt”,”r”)
>>> for lines in infile:

print lines|[:-1]
>>> infile.close()

File 10O

* Opening a file for writing prepares that file for receiving
data.

* |f file does not exist, it is created

e |f the file exists, it is DELETED

* Opening a file for writing
<filevar>=open(<filename>,"w”

* Data can be written into the file as
<filevar>.write(<string>)

e write function is similar to print. But it is not as flexible
— takes a single string argument
— new line should be explicitly provided

File 10O

 What does this code do?
>>> ofp=open('list.txt’,'w")
>>> ofp.write('First line\n')
>>> for i in range(10):

ofp.write('this is line %d\n' % i)

>>> ofp.close()

* QOutput

First line

this is line O

this is line 1

this is line 2

this is line 3

this is line 4

this is line 5

this is line 6

this is line 7

this is line 8

this is line 9

Example

this is a comment line discard this line
records start from here

04001020 ; Ali Gel; 20 ; 34; 100
04001032 ; Veli Git; 36 ; 23; 57
04002123 ; Ferhat Can; 44 ; 46 ;90

* Any line starting with a “#” is a comment line, your
program should not process these lines

e Each record has 5 fields: student number, student name
and surname,

* midterm 1 grade, midterm 2 grade, final exam grade.
* Fields are separated with semicolons.

Example

e Total grade is computed as

— %25 from midterm 1

— %35 from midterm 2

— %40 from final exam
* Read these records from the given file
e Compute and display the

— average grade of midterm 1

— average grade of midterm 2

— average grade of final exam

ifp=open('file.txt','r")

def find_average(grades):
return(sum(grades)/len(grades))

midterm1_grades=[]

midterm2_grades=[]

final_grades=[]

for line in ifp:
if line[0]=="#"

continue

info=line.split("; ");
midterm1_grades.append(int(info[2]))
midterm2_grades.append(int(info[3]))
final_grades.append(int(info[4]))

print('2vg for midterm 1:'+str(find_average(midterml_grades)))
print(‘Avg for midterm 2:'+ str(find_average(midterm2_grades)))
print('2vg for final: ' + str(find_average(final_grades)))

ifp.close()

Example

* Write a Python script that reads a file, replaces each

newline with double newlines and writes the output to

another file

ifp=open('file.txt','zr"')
ofp=open('output .txt','w')

for line in ifp:
ofp.write(line)
ofp.write('\n')

ifp.close()
ofp.close()

N

