
ISE 101 – Introduction to Information Systems

• Lecture 4 Objectives:

– Lists

– For loops

LISTS

Lists

• List is an array of values

• A list can be formed using squared brackets […]

• The values in list are called ‘elements’ or ‘items’

• Items within the list should be separated using comma

• A list can be

– an array of integer numbers

x=[1, 5, -5]

– an array of floating point numbers

x=[-3.4, 4.67, 34.56]

Lists

• Contrary to other programming languages, Python lists

– may contain different types

– can be extended/shrinked dynamically

• The following list contains a string, a float, an integer, and

another list:

[’spam’, 2.0, 5, [10, 20]]

• A list within another list is said to be nested

• A list that contains no elements is called an empty list;

you can create one with empty brackets, [].

Indices of Lists

• List indices work the same way as string indices:

– Any integer expression can be used as an index.

– If you try to read or write an element that does not

exist, you get an error.

– If an index has a negative value, it counts backward

from the end of the list.

Indices of Lists

>>> L=[3,4,5.0,6+0j,'test','String']

>>> L[0]

3

>>> L[2]

5.0

>>> L[-1]

'String'

>>> L[23]

Traceback (most recent call last):

File "<string>", line 1, in <fragment>

builtins.IndexError: list index out of range

>>> L[-23]

Traceback (most recent call last):

File "<string>", line 1, in <fragment>

builtins.IndexError: list index out of range

List Slices

• Same as strings slices, sublists of items can be accessed

using slices

>>> L=[3,4,5.0,6+0j,'test','String']

>>> L[:3]

[3, 4, 5.0]

>>> L[-3:0]

[]

>>> L[-3:-1]

[(6+0j), 'test']

>>> L[-1:-3:-1]

['String', 'test']

>>> L[2::2]

[5.0, 'test']

>>> L[:-4]

[3, 4]

“len” with Lists

• “len(list_variable)” returns the number of items within

the list

• Positive indices start from 0 to len(list)-1

• Negative indices start from –len(list) to -1

>>> L=[3,4,5.0,6+0j,'test','String']

>>> len(L)

6

>>> L[len(L)-1]

'String'

>>> L[-1:-len(L):-1]

['String', 'test', (6+0j), 5.0, 4]

“in” with Lists

• “in” operator was used to check the existence of a

character or substrings within a string ie.

>>> ‘ic’ in ‘Nice’

>>> True

• Similarly, “in” can be used to check the existence of an

element in a list

>>> 3 in [3,4,5]

>>> True

• True is returned as 3 is an item within the [3,4,5]

“in” with Lists

>>> L=[3,4,5.0,6+0j,'test','String']

>>> 5 in L

True

>>> 6 in L

True

>>> 'est' in L

False

>>> 'Test' in L

False

>>> 'test' in L

True

“+” and “*” Operators for Lists

• Same as strings

– “+” is used to merge lists into a single list

>>> L1=[2, 4.9]

>>> L2=[3,'etc']

>>> L3=[L1,7]

>>> L1+L2

[2, 4.9, 3, 'etc']

>>> L1+L2+L3

[2, 4.9, 3, 'etc', [2, 4.9], 7]

“+” and “*” Operators for Lists

• Same as strings

– “*” is used to repeat list

>>> L1=[2, 4.9]

>>> L2=[3,'etc']

>>> L3=[L1,7]

>>> L1*3

[2, 4.9, 2, 4.9, 2, 4.9]

>>> L1*3+L2+L3*2

[2, 4.9, 2, 4.9, 2, 4.9, 3, 'etc', [2, 4.9], 7,

[2, 4.9], 7]

>>> L1*3.0

Traceback (most recent call last):

File "<string>", line 1, in <fragment>

builtins.TypeError: can't multiply sequence by

non-int of type 'float'

Lists are Mutable

• What is the difference of S and L

S=“test”

L=[‘t’,’e’,’s’,’t’]

• S is of type string and L is of type list

• Strings are immutable.

• Once generated, characters within a string cannot be

changed

• Lists are mutable

• Items of a list can be changed

Lists are Mutable

>>> S='test'

>>> S[1]='c'

Traceback (most recent call last):

File "<string>", line 1, in <fragment>

builtins.TypeError: 'str' object does not

support item assignment

>>> L=['t','e','s','t']

>>> L[1]='c'

>>> L

['t', 'c', 's', 't']

Conversion from String to List

• It is possible to convert a string to list of characters using

“list(string_variable)”

>>> S='test'

>>> list(S)

['t', 'e', 's', 't']

“range”

• Frequently, lists with adjacent integers are needed

• A special function “range” can be used to generate these

integer lists

• list(range(N)) creates a list of integers that start from 0

and goes upto N-1 by increments of 1

>>> L=range(4)

>>> L

range(0, 4)

>>> list(L)

[0, 1, 2, 3]

>>> list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

“range”

• If two arguments are used in range, integer list includes

the first argument, goes upto second argument (excludes

the second argument) by increments of 1

• list(range(N1,N2)) will generate a list of integers that start

from N1 and goes to N2-1 by increments of 1

• If N1>=N2 an empty list will be returned

>>> list(range(3,7))

[3, 4, 5, 6]

>>> list(range(7,3))

[]

>>> list(range(3,3))

[]

“range”

• A third argument can be given to “range” to change the

step size

• Default step size is 1

• list(range(N1,N2,S)) will generate a list of integers that

starts from N1 and goes upto N2-1 with steps of S

>>> list(range(3,17,4))

[3, 7, 11, 15]

>>> list(range(7,3,-1))

[7, 6, 5, 4]

>>> list(range(7,3,-2))

[7, 5]

>>> list(range(7,3,-5))

[7]

List Extension

• A list may be extended with another list using the

“extend” method of a list

• Items of the second list is added to the items of the list

• There are two ways of using “extend” method (this is

valid for all methods)

– list_variable1.extend(list_variable2)

– list.extend(list_variable1,list_variable2)

• In both ways, items of list_variable2 will be added to END

of the items of list_variable1

• Items of list_variable2 will not be effected

List Extension

• What is the difference between “+” operator and

“extend” method ?

• “+” operator do not change the items of its arguments,

but generate a new list

>>> L1=[2, 4.9]
>>> L2=[3, 'etc']
>>> L1+L2
[2, 4.9, 3, 'etc']
>>> L1
[2, 4.9]
>>> L1.extend(L2)
>>> L1
[2, 4.9, 3, 'etc']

List Extension

>>> L1=[2, 4.9]
>>> L2=[3, 'etc']
>>> list.extend(L1,L2)
>>> L1
[2, 4.9, 3, 'etc']
>>> L2
[3, 'etc']

Dynamic Items of List

• New elements (items) can be added to a list using

“append” method

– list_variable.append(new_item)

– list.append(list_variable,new_item)

>>> L1=[2, 4.9]
>>> L1.append("s")
>>> L1
[2, 4.9, 's']
>>> list.append(L1,3+4j)
>>> L1
[2, 4.9, 's', (3+4j)]

Pop Items from Lists

• “pop” method deletes the last item of a list and returns

its value

>>> L1=[2, 4.9]
>>> tmp=L1.pop()
>>> tmp
4.9
>>> L1
[2]
>>> tmp=L1.pop()
>>> tmp
2
>>> L1
[]

Pop Items from Lists

• It is possible to “pop” another item other than the last

one

• Index of the item is given as an argument to “pop”

method

>>> L1=[2, 4.9, 5, 7]
>>> tmp=L1.pop(2)
>>> tmp
5
>>> L1
[2, 4.9, 7]

Deleting Items from Lists

• “del” function (not a method) can be used to remove

items from list.

• del(list_variable[index]) is used to remove item(s) of a list

• Difference between “pop” and “del”:

– “pop” returns the value of deleted item

– “del” does not return any value

>>> L1=[2, 4.9, 5, 7]

>>> del(L1[2])

>>> L1

[2, 4.9, 7]

>>> del(L1[0])

>>> L1

[4.9, 7]

Deleting Items from Lists

• Slices can be used to delete a sublist

• If no index is given the variable is deleted

>>> L1=[2, 4.9, 5, 7, 11 , 123]

>>> del(L1[:4])

>>> L1

[11, 123]

>>> del(L1)

>>> L1

Traceback (most recent call last):

File "<string>", line 1, in <fragment>

builtins.NameError: name 'L1' is not defined

Deleting Items from Lists

• If you know what to delete but do not know its index,

“remove” method can be used

• Item to be removed is given as argument to “remove”

method

• If there is no such item, it will cause an error

>>> L1=[2, 4.9, 5, 7, 11, 123]

>>> L1.remove(7)

>>> L1

[2, 4.9, 5, 11, 123]

>>> L1.remove(12)

Traceback (most recent call last):

File "<string>", line 1, in <fragment>

builtins.ValueError: list.remove(x): x not in

list

“sorted” and “sort”

• “sorted” function or “sort” method can be used to sort

the items of a list in an increasing order

• “sorted” sorts the list and returns a new sorted list.

Original list items do not change

• “sort” method sorts the list item

>>> L1=[32, 14.9, 5, 11, 123]

>>> sorted(L1)

[5, 11, 14.9, 32, 123]

>>> L1

[32, 14.9, 5, 11, 123]

>>> L1.sort()

>>> L1

[5, 11, 14.9, 32, 123]

“sorted” and “sort”

• Lists of strings can also be sorted according to their

Unicode numbers

>>> L2=['as','a','test','string','s1']

>>> sorted(L2)

['a', 'as', 's1', 'string', 'test']

“sorted” and “sort”

• Mixed item lists require more arguments (that we may

cover later) to “sorted” or “sort”

• Otherwise, it gives an error as it does not know how to

order strings and floats

>>> L1=[32, 14.9, 5, 11, 123, 'q','as']

>>> sorted(L1)

Traceback (most recent call last):

File "<string>", line 1, in <fragment>

builtins.TypeError: unorderable types: str() <

float()

Summation of Items in a List

• “sum” function can be used to add the elements in a list

if they are all numbers

• Otherwise, this will cause error

>>> L1=[32, 14.9, 5, 11, 123]

>>> L2=['as', 'a', 'test', 'string', 's1']

>>> sum(L1)

185.9

>>> sum(L2)

Traceback (most recent call last):

File "<string>", line 1, in <fragment>

builtins.TypeError: unsupported operand type(s)

for +: 'int' and 'str'

“split”

• “split” method is used to split a string into a list

• As an argument to “split” a delimiter is given

• If no argument is given, by default the delimiter is the

white space

• Delimiter can be a character or it can be string

• If the delimiter cannot be found in the string, the whole

string will be the only item of the list

• Delimiters are case sensitive

>>> S="This is a test string ; Another

string ; New string"

>>> L1=S.split()

>>> L1

['This', 'is', 'a', 'test', 'string', ';',

'Another', 'string', ';', 'New', 'string']

>>> L2=S.split(';')

>>> L2

['This is a test string ', ' Another string

', ' New string']

>>> L3=S.split('st')

>>> L3

['This is a te', ' ', 'ring ; Another ',

'ring ; New ', 'ring']

“join”

• “join” is a method of string

• It joins the items of a list (with string items) by replacing

the string in between the list items as delimiter

>>> L1=['This', 'is', 'a', 'test',

'string',';', 'Another', 'string', ';',

'New‘, 'string']

>>> S='*1*'

>>> S.join(L1)

'This*1*is*1*a*1*test*1*string*1*;*1*Another*

1*string*1*;*1*New*1*string'

FOR LOOPS

For Loops

• “for” loops are used to iterate through the items of a list

• In each iteration of the loop, one item of the list is

assigned to loop variable

• “for” loop will iterate as the number of items within list

for s in ['Ali','Ayse','Fatma']:
print('Hello ' + s)

Hello Ali
Hello Ayse
Hello Fatma

For Loops

• “for” loop structure

for loop_variable in list_variable:
statement 1
statement 2
statement 3

Scope of the for loop

columnTabs

For Loop

for loop_variable in list_variable:
statement 1
statement 2
statement 3

In the first iteration of the loop,

first item of the list is assigned to

loop variable
In

 t
h

e
 s

e
co

n
d

it
e

ra
ti

o
n

 o
f

th
e

 l
o

o
p

,

se
co

n
d

 i
te

m
 o

f
th

e
 l

is
t

is
 a

ss
ig

n
e

d
 t

o
 l
o

o
p

va
ri

a
b

le

In
 t

h
e

 N
th

 i
te

ra
ti

o
n

 o
f

th
e

 l
o

o
p

,

N
th

 i
te

m
 o

f
th

e
 l
is

t
is

 a
ss

ig
n

e
d

 t
o

lo
o

p
 v

a
ri

a
b

le

Example

• Add the square of numbers between 1 and 150

sum=0

for num in range(1,151):
sum=sum+num**2

print('Sum of squares: ' + str(sum))

“else” in for loop

• “else” can be used in the for loop

• After all items within the list are used (in iteration

len(list)+1), statements within the else scope are

executed

for i in range(1, 5):

print(i)

else:

print('The for loop is over')

1

2

3

4

The for loop is over

“break” and “continue” in For Loops

• “break” and “continue” work within the for loops

• After “break” statement, the for loop is terminated.

Scope of else is not executed

for i in range(1, 5):
if (i==3):
break

print(i)
else:
print('The for loop is over')

1

2

“break” and “continue” in For Loops

• After “continue” statement, the current iteration of the

for loop is skipped.

• Next item of the list is assigned to loop variable

• Statements in the scope of “else” are executed when the

items of the list are finished

“break” and “continue” in For Loops

for i in range(1, 5):
if (i==3):
continue

print(i)
else:
print('The for loop is over')

1

2

4

The for loop is over

Example

• Assume there is a list of strings,

• Each string is like

“student number;student name;midterm 1 grade;midterm

2 grade; final grade”

Example:

L=[“040080111;Ayse Ucan;80;75;45”,

“040080134;Ali Yaman;100;55;25”,

“040080151;Hasan Kacan;8;45;15”,

…

“040080312;Yaman Derin;90;33;77”]

Example

• Write a Python string that computes the weighted

average grade such as

0.2*midterm1+0.3*midterm2+0.5*final

• List all students and their average grades in the following

format

Number**Name**Average grade

Example

040080123**Ali Urgan**34.67

040080324**Ayse Ucan**68.5

L=['040080111;Ayse Ucan;80;75;45',
'040080134;Ali Yaman;100;55;25',
'040080151;Hasan Kacan;8;45;15',
'040080312;Yaman Derin;90;33;77']

for line in L:
student_info=line.split(';')

student_number=student_info[0]
student_name=student_info[1]
midterm1_grade=int(student_info[2])
midterm2_grade=int(student_info[3])
final_grade=int(student_info[4])

compute the average grade

average_grade=0.2*midterm1_grade + \
0.3*midterm2_grade + \
0.5*final_grade

print the result
tmp_list=[student_number,student_name,str(average_grade)]
delimiter='**'

print(delimiter.join(tmp_list))

Example

• Generate 1000 random integers between 0 and 5

• Count the number of occurrences (also called histogram)

for each integer (ie. how many 3 in the 1000 random

integers) and print

import random

hist=[0,0,0,0,0,0]

i=0;

create 1000 random numbers

while i<1000:

num=random.randint(0,5)

i=i+1

hist[num]=hist[num]+1

print the histogram

for i in range(0,6):

print(str(i) + ' --> ' + str(hist[i]))

Example

• Fibonacci series

1,1,2,3,5,…

• First two numbers are 1

• After two numbers, each number is is the addition of the

previous two numbers

• Write a Python code that prints the first 10 numbers in

the Fibonacci series

i=0;

fibonacci=[]

for i in range(0,10):

if i==0 or i==1:

fibonacci.append(1)

else:

num=fibonacci[i-1]+fibonacci[i-2]

fibonacci.append(num)

print(str(i) + ' --> ' + str(fibonacci[i]))

0 --> 1

1 --> 1

2 --> 2

3 --> 3

4 --> 5

5 --> 8

6 --> 13

7 --> 21

8 --> 34

9 --> 55

Example

• Exponent of Euler number (ex) can be computed as

• Write a Python code that gets x from user

• Computes ex to the 1000th iteration

• Check

e1=2.7182818284590452353602874713526624977572

i=0;

x=int(input('Enter the exponent of Euler: '))

sum=1

mult=1

fact=1

for i in range(1,10):

mult=mult*x

fact=fact*i

sum = sum + mult/fact

print('e**x is ' + str(sum))

