ISE 101 — Introduction to Information Systems

* Lecture 4 Objectives:
— Lists

— For loops

LISTS

Lists

e Listis an array of values
e A list can be formed using squared brackets [... |
* The values in list are called ‘elements’ or ‘items’
* |tems within the list should be separated using comma
* Alist can be
— an array of integer numbers
x=[1, 5, -5]
— an array of floating point numbers
x=[-3.4, 4.67, 34.56]

Lists

* Contrary to other programming languages, Python lists
— may contain different types
— can be extended/shrinked dynamically

* The following list contains a string, a float, an integer, and
another list:

['spam’, 2.0, 5, [10, 20]]
e A list within another list is said to be nested

e A list that contains no elements is called an empty list;
you can create one with empty brackets, [].

Indices of Lists

e List indices work the same way as string indices:
— Any integer expression can be used as an index.
— If you try to read or write an element that does not
exist, you get an error.

— If an index has a negative value, it counts backward
from the end of the list.

Indices of Lists

>>> L=[3,4,5.0,6+073, "test', 'String']
>>> L[0]

3

>>> L[2]

5.0

>>> L[—-1]

'String'

>>> L[23]

Traceback (most recent call last):

File "<string>", line 1, 1n <fragment>
builtins.IndexError: list index out of range
>>> L[—-23]

Traceback (most recent call last):

File "<string>", line 1, 1n <fragment>

builtins.IndexError: list index out of range

List Slices

e Same as strings slices, sublists of items can be accessed
using slices

//::; L=[3,4,5.0,6+073, '"test', 'String'] ‘\\\
>>> L[:3]

[3, 4, 5.0]

>>> L[-3:0]

[]

>>> L[-3:-1]

[(6+07), 'test']
>>> L[-1:-3:-1]
['String', 'test']
>>> L[2::2]

[5.0, 'test']

>>> L[:-4]
& & Y,

“len” with Lists

* “len(list_variable)” returns the number of items within
the list

e Positive indices start from O to len(list)-1
* Negative indices start from —len(list) to -1

4 N

>>> L=[3,4,5.0,64+407, "test', 'String']
>>> len (L)

6

>>> L[len(L)-1]

'String'

>>> L[-1:-len(L):-1]

['String', 'test', (6+03), 5.0, 4]

N _/

“in” with Lists

* “in” operator was used to check the existence of a
character or substrings within a string ie.

>>> ‘ic’ in ‘Nice’

>>> True

e Similarly, “in” can be used to check the existence of an
element in a list

>>> 3 in [3,4,5]
>>> True

 Trueis returned as 3 is an item within the [3,4,5]

“in” with Lists

>>> L=[3,4,5.0,6+07, "test"', 'String"']
>>> 5 1in L

True

>>> 6 1n L

True

>>> 'est!' in L
False

>>> 'Test' in L
False

>>> 'test' in L
True

N

“+” and “*” Operators for Lists

* Same as strings
— “+” is used to merge lists into a single list

~

>>> Ll=[2, 4.9]

>>> L2=[3, 'etc']

>>> L3=[L1, 7]

>>> L1+4+L2

(2, 4.9, 3, 'etc']

>>> L1+L2+L3

(2, 4.9, 3, 'etc', [2, 4.9], 7]

o

“+” and “*” Operators for Lists

* Same as strings

(g

— is used to repeat list

>>> Ll=[2, 4.9] ‘\\\
>>> L2=[3, 'etc']

>>> L3=
>>> L1~*
(2, 4.9, 2, 4.9, 2, 4.9]
>>> L1*34L24+L3*2
(2, 4.9, 2, 4.9, 2, 4.9, 3, 'etc', [2, 4.9], 7T,
(2, 4.9], 7]
>>> L1*3.0
Traceback (most recent call last):

File "<string>", line 1, 1n <fragment>

\\iiiltins.TypeError: can't multiply sequence by

non—-int of type 'float'

v

Lists are Mutable

 What is the difference of S and L
S="test”
L=["t")e’)s’/t’]
e Sis of type string and L is of type list
e Strings are immutable.

* Once generated, characters within a string cannot be
changed

e Lists are mutable
* |tems of a list can be changed

Lists are Mutable

>>> S='test'
>>> S[l]="c'
Traceback (most recent call last):

File "<string>", line 1, 1n <fragment>
bulltins.TypeError: 'str' object does not
support item assignment
>>> L=["'t','e','s', "t"]
>>> L[l]="c'
>>> L
['e', 'ec', 's', 't']

Conversion from String to List

e |tis possible to convert a string to list of characters using
“list(string_variable)”

4)

>>> S='test'
>>> 1ist (S)
[ltl’ lel’ 'S', lt']

N\)

“range”

* Frequently, lists with adjacent integers are needed

e A special function “range” can be used to generate these
integer lists

 list(range(N)) creates a list of integers that start from O
and goes upto N-1 by increments of 1

/.)

>>> L=range (4)

>>> L

range (0, 4)

>>> list (L)

(0, 1, 2, 3]

>>> list (range(10))

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

o

Hrange”

e |If two arguments are used in range, integer list includes
the first argument, goes upto second argument (excludes
the second argument) by increments of 1

* list(range(N1,N2)) will generate a list of integers that start
from N1 and goes to N2-1 by increments of 1

e If N1>=N2 an empty list will be returned

~

>>> list (range (3, 7))
[31 4/ 5/ 6]
>>> list (range(7/,3))

[]
>>> list (range(3,3))

x“ Y,

llrange”

* A third argument can be given to “range” to change the
step size

e Default step sizeis 1

 list(range(N1,N2,S)) will generate a list of integers that
starts from N1 and goes upto N2-1 with steps of S

(s>

[3’
>>>
[7’
>>>
[7’
>>>

o

list (range(3,17,4)) ‘\\
7, 11, 15]

list (range(7,3,-1))
6, 5, 4]

list (range(7,3,-2))
o

list (range(7,3,-5))

List Extension

* A list may be extended with another list using the
“extend” method of a list

* |tems of the second list is added to the items of the list

* There are two ways of using “extend” method (this is
valid for all methods)

— list_variablel.extend(list_variable2)
— list.extend(list_variablel,list_variable2)

* |In both ways, items of list_variable2 will be added to END
of the items of list_variablel

* |tems of list_variable2 will not be effected

List Extension

 What is the difference between “+” operator and
“extend” method ?

 “+” operator do not change the items of its arguments,
but generate a new list

/>>> L1=[2, 4.9] \

>>> [2=[3, 'etc']
>>> L1+L2

[2, 4.9, 3, 'etc']
>>> L1

[2, 4.9]

>>> L1.extend(L2)
>>> L1

k[z, 4.9, 3, 'etc'] j

List Extension

~

>>> L1=[2, 4.9]

>>> | 2=[3, 'etc']
>>> |ist.extend(L1,L2)
>>> L1

[2, 4.9, 3, 'etc']

>>> L2

[3, 'etc']

_

Dynamic Items of List

 New elements (items) can be added to a list using
“append” method

— list_variable.append(new_item)
— list.append(list_variable,new item)

>>> L1=[2, 4.9]

>>> L1.append("s")

>>> L1

[2, 4.9, 's']

>>> |ist.append(L1,3+4j)
>>> L1

[2,4.9,'s", (3+4])]

Pop Items from Lists

e “pop” method deletes the last item of a list and returns
its value

//::>> L1=[2, 4.9] ﬂ\\\

>>> tmp=L1.pop()
>>> tmp

4.9

>>> L1

[2]

>>> tmp=L1.pop()
>>> tmp

2

>>> L1

NI /

Pop Items from Lists

It is possible to “pop” another item other than the last
one

Index of the item is given as an argument to “pop”
method

>>> L1=[2, 4.9, 5, 7]
>>> tmp=L1.pop(2)
>>> tmp

5

>>> L1

[2, 4.9, 7]

o /

Deleting Items from Lists

e “del” function (not a method) can be used to remove
items from list.

* del(list _variable[index]) is used to remove item(s) of a list
e Difference between “pop” and “del”:

— “pop” returns the value of deleted item

— “del” does not return any value

/;>> Ll=]

2, 4.
>>> del (L1[2]

>>> L1

[2, 4.9, 7]
>>> del (L1[0])
>>> L1

Deleting Items from Lists

e Slices can be used to delete a sublist
* If noindex is given the variable is deleted

>>> Ll=[2, 4.9, 5, 7, 11 , 123]
>>> del (L1[:4])
>>> L1
[11, 123]
>>> del (L1)
>>> L1
Traceback (most recent call last):
File "<string>", line 1, 1in <fragment>

N

builtins.NameError: name 'LL1' i1is not defined

Deleting Items from Lists

“remove” method can be used

method

If there is no such item, it will cause an error

If you know what to delete but do not know its index,

ltem to be removed is given as argument to “remove”

//:;> Ll1=[2, 4.9, 5, 7, 11, 123]

>>> L1.remove (7)

>>> L1

(2, 4.9, 5, 11, 123]

>>> L1.remove (12)

Traceback (most recent call last):

e

File "<string>", line 1, 1n <fragment>
builtins.ValueError: list.remove (x):

X not 1in

>

/

“sorted” and “sort”

e “sorted” function or “sort” method can be used to sort
the items of a list in an increasing order

e “sorted” sorts the list and returns a new sorted list.
Original list items do not change

* “sort” method sorts the list item

//:>> L1=[32, 14.9, 5, 11, 123] ‘\\

>>> sorted (L1l)

[5, 11, 14.9, 32, 123]
>>> L1

(32, 14.9, 5,
>>> Ll.sort ()
>>> L1

\\i?, 11, 14.9, 32, 123] 4//

11, 123]

“sorted” and “sort”

e Lists of strings can also be sorted according to their
Unicode numbers

~

>>> L2=['as', 'a', 'test', 'string', "s1"']
>>> sorted(L2)
['a', 'as', 'sl', 'string', 'test']

_

\

“sorted” and “sort”

 Mixed item lists require more arguments (that we may
cover later) to “sorted” or “sort”

 Otherwise, it gives an error as it does not know how to
order strings and floats

4 N

>>> Ll1=[32, 14.9, 5, 11, 123, 'g', 'as']
>>> sorted (L1)
Traceback (most recent call last):

File "<string>", line 1, 1n <fragment>
builtins.TypeError: unorderable types: str () <
float ()

_ v

Summation of Items in a List

e “sum” function can be used to add the elements in a list
if they are all numbers

 Otherwise, this will cause error

K» L1=[32, 14.9, 5, 11, 123] \

>>> L2=['as', 'a', 'test', 'string', 'sl']

>>> sum(L1)
185.9
>>> sum(L2)
Traceback (most recent call last):
File "<string>", line 1, 1n <fragment>
builtins.TypeError: unsupported operand type(s)

\\fir +: 'int' and 'str' 4///

”Split”

“split” method is used to split a string into a list
As an argument to “split” a delimiter is given

If no argument is given, by default the delimiter is the
white space

Delimiter can be a character or it can be string

If the delimiter cannot be found in the string, the whole
string will be the only item of the list

Delimiters are case sensitive

>>> S="This 1s a test string ; Another
string ; New string"

>>> L1=S.split ()

>>> L1

['This', '1s', 'a', 'test', 'string', ';',
'Another', 'string', ';', 'New', 'string']

>>> L2=S.split(';")

>>> L2

['This 1s a test string ', ' Another string
', ' New string']

>>> L3=S.split('st')

>>> L3

['This 1s a te', ' ', 'ring ; Another ',

'ring ; New ', 'ring']

llein”

* “join” is a method of string

* It joins the items of a list (with string items) by replacing
the string in between the list items as delimiter

I//:>> Ll1=['This', 'is', 'a' '"test', ‘\\\

'string',';', 'Another', 'string', ';',
'New’, 'string']

>>> S="'*]1*"

>>> S.join(L1)

'"This*1l*1s*l*a*l*test*1l*string*1l*; *1*Another*

\\\;l*string*l*;*l*New*l*string' ///

4

FOR LOOPS

For Loops

 “for” loops are used to iterate through the items of a list

b N

forsin['Ali','Ayse’','Fatma’']:
print('Hello ' + s)

-)

* |n each iteration of the loop, one item of the list is
assigned to loop variable

* “for” loop will iterate as the number of items within list

. N
Hello Ali

Hello Ayse
Hello Fatma

For Loops

e “for” loop structure

/ Tabs
f‘cyo{p_variable in Iist_variable:/

statement 1
statement 2 . Scope of the for loop

statement 3

column \\

=

N /‘

For Loop

-

for loop_variable in list_variable:

statement 1
statement 2
statement 3

v
In the first iteration of the loop,

first item of the list is assigned to

Q)p variable

\ 4

iteration of the loop,
second item of the list

In the second

o
@)
RS,
=
= Y
c

Q
no—
= Q
»n .©
MM -

L)
L2 >

Nth item of the list is assigned to

In the Nth iteration of the loop,
loop variable

i

Example

* Add the square of numbers between 1 and 150

-/sum=0

for num in range(1,151):
sum=sum+num**2

print('sum of squares: ' + str(sum))

N

“else” in for loop

e “else” can be used in the for loop

e After all items within the list are used (in iteration

len(list)+1), statements within the else scope are
executed

V.

foriin range(1, 5):

print(i)
else:

print('The for loop is over')
¥

2
3
4
'\The for loop is over

“break” and “continue” in For Loops

 “break” and “continue” work within the for loops

e After “break” statement, the for loop is terminated.
Scope of else is not executed

-

for i in range(1, 5):
if (i==3):
break
print(i)
else:

& print('The for loop is over')

1
2

-

“break” and “continue” in For Loops

o After “continue” statement, the current iteration of the
for loop is skipped.

 Next item of the list is assigned to loop variable

e Statements in the scope of “else” are executed when the
items of the list are finished

“break” and “continue” in For Loops

a

foriin range(1, 5):
if (i==3):
continue
print(i)
else:
print('The for loop is over')

he for loop is over

L

7-I-hN|-l\

Example

* Assume there is a list of strings,
e Each string is like

“student number;student name;midterm 1 grade;midterm
2 grade; final grade”

Example:

L=[“040080111;Ayse Ucan;80,;75,45”,
“040080134;Ali Yaman;100;55;257,
“040080151;Hasan Kacan;8;45;15”,

“040080312;Yaman Derin;90;33;77"]

Example

* Write a Python string that computes the weighted
average grade such as

0.2*midterm1+0.3*midterm2+0.5*final

e List all students and their average grades in the following
format

Number**Name**Average grade
Example

040080123**Ali Urgan**34.67

040080324**Ayse Ucan**68.5

L=['040080111;Ayse Ucan;80;75;45"',
'040080134;Ali Yaman;100;55;25",
'040080151;Hasan Kacan;8;45;15",
'040080312; Yaman Derin;90;33;77']

for line in L:
student_info=line.split('; ')
student_number=student_info[0]
student_name=student_info[1]
midterm1_grade=int(student_info[2])
midterm2_grade=int(student_info[3])
final_grade=int(student_info[4])

compute the average grade

average_grade=0.2*midterm1_grade +
0.3*midterm2_grade +
0.5*final_grade

print the result
tmp_list=[student_number,student_name,str(average_grade)]
delimiter="*x"

print(delimiter.join(tmp_list))

Example

 Generate 1000 random integers between 0 and 5

* Count the number of occurrences (also called histogram)
for each integer (ie. how many 3 in the 1000 random
integers) and print

@ort random \

hist=[0,0,0,0,0,0]

i=0;

create 1000 random numbers

while i<1000:
num=random.randint(0,5)
i=i+1
histfnum]=hist[num]+1

print the histogram
foriin range(0,6):

\print(str(i) + ' ——> ' + str(hist[i])) /

Example

Fibonacci series
1,1,2,3,5,...
First two numbers are 1

After two numbers, each number is is the addition of the
previous two numbers

Write a Python code that prints the first 10 numbers in
the Fibonacci series

4 N

i=0;
fibonacci=[]

foriin range(0,10):
ifi==0ori==1:
fibonacci.append(1)
else:
num=fibonacci[i-1]+fibonacci[i-2]
fibonacci.append(num)

print(str(i) + ' ——> ' + str(fibonacci[i]))

- J

Example

* Exponent of Euler number (e*) can be computed as

3 o

‘)
£ £ T Z

n=0 "

l.??
n!

 Write a Python code that gets x from user
e Computes e* to the 1000th iteration
 Check

el=2.7182818284590452353602874713526624977572

P \

x=int(input('Enter the exponent of Euler: '))

sum=1
mult=1
fact=1

for i in range(1,10):
mult=mult*x
fact=fact*i
sum = sum + mult/fact

T‘It('e**x is ' + str(sum)) /

