ISE 101 — Introduction to Information Systems

* Lecture 3 Objectives:
— While loops
— Strings

While Loops

 Write a Python script that computes the sum of squares

from 1 to 5.
4 N

sum = 0;

sum = sum + 1**2:
sum = sum + 2**2-
sum = sum + 3**2:
sum = sum + 4**2-
sum = sum + 5**2-

\print('Sum of squares: ' + str(sum)) /

While Loops

 Write a Python script that computes the sum of squares

from 1 to 150.
4 N

sum

0;

sum = sum + 1**2:
sum = sum + 2**2-
sum = sum + 149%*2-

sum = sum + 150%*2:

\print('Sum of squares: ' + str(sum)) /

Loops

 Sometimes a portion of the code has to be repeated
many times.

* |In the previous example, the square and summation have
to be repeated 150 times.

7~

num=num+1]<

(initialize
sum=0
g num=0 P

TRUE

sum=sum+num**2]—

>[Display sum]

FALSE

While Loops

 Write a Python script that computes the sum of squares
from 1 to 150.

/sum = 0 N

num = 0

while num<=150:
sum = sum + num**2
num = num + 1

print('sum of squares: ' + str(sum))

\ /

While Loop

/ Use colon after thh

logical expression

while (logical_expression):

statement 1 | Statements in the scope are
statement 2 — executed if the logical
expression is True

TABS are used to
determine the

\ scope of while loop /

While Loop

mile (logical_expression):

else:

statement 1
statement 2
statement 3

statement 4
statement 5

Statements in this scope are
— executed if the logical

statement 6 |

expression is False

>

/

While Loop

e Statements within the scope of the while loop are
executed if the logical statement produces TRUE

* If the logical statement generates FALSE, the statements
within the scope are skipped.

* The result of the logical expression changes within the
loop

* |If the logical expression gives TRUE, it becomes an
infinite loop

* Infinite loops never end

While Loop

/while (True):)
statement 1
statement 2
statement 3
g J
/while (3 < 5): \
statement 1
statement 2
statement 3

Infinite Loops

(initialize

What is the problem with the following algorithm?

Variable num is not incremented.

Therefore, (hum<=150) will always produce True.
This is an infinite loop, that never ends.

sum=0

g num=0 P

FALSE

TRUE

sum=sum+num**2]—

>[Display sum]

Pre-test and Post-test Loops

Pre-test loop

Post-test loop

Pre-test loop controls a
logical expression before the
loop

While loop is pre-test loop

The logical statement after
while is tested

If it produces True, the
statements within the scope
are executed

Post-test loop controls a
logical expression after the
loop

It executes the statements
within the scope of the loop

It checks a logical expression

If it produces True, loop
continue

There is no post-test loop in
Python

In C, do/while loop is an
example of post-test loop

Example

 Write a Python script that
— generates a random number

— asks the user to guess the random number until the
guess is equal to the random number

anort random \

random_number = random.randint(0,10)
user_guess=-1

while random_number!=user_guess:
user_guess=int(input('Enter an integer : '))

Qrint('Correct') /

Example

* Write a Python script that computes the average of even
integers between 1-100

@m 0 \
nu 1
N=0

m

while num<=100:
if nuM%2==0:

sum = sum + num
N=N+1

num = num + 1

print('Average of even numbers between 1-100 : '
kstr(sum/N))

/

Example

* Write a Python script that gets floating point numbers
from the user and adds them up until the sum is greater
than 100

4 N

sum =0

while sum<=100:
num=float(input('Enter another number: '))

sum = sum + num

print('Sum : ' + str(sum))

N /

Example

* Write a Python script that finds and prints how many
numbers there are between 1-1000 which are a multiple
of 7.

(num=1 N

N_multiple=0

while num<=1000:
iIf num% 7==0:
N_multiple = N_multiple + 1
num = num + 1

print(' There are ' + str(N_multiple) + ' multiples

Q:‘ 7 between 1-1000') /

Break

 Sometimes, the loop has to be stopped
* “break” is used within the loop to stop the loop

* Loop is terminated

 Once the loop is stopped using break, statements within
the scope of the loop (that are after break) are skipped.

Example

@wm=5

while (denom>=-2):
if denom!=0:
print('Result is :' + str(10/denom))
else:
print('stopping the loop')
break

denom = denom - 1
print('still in the loop')

Qnt('Loop is ended')

N

Output

Result is :2.0
Still in the loop
Result 1is :2.5
Still in the loop
Result 1s :3.3333333333333335
Still in the loop
Result is :5.0
Still in the loop
Result is :10.0
Still in the loop
Stopping the loop
Loop 1s ended

Continue

* |n the previous example, results of 10/-1 and 10/-2 are
not printed

* Because of break, the while loop is terminated when
denomis O

* Logical expression (denom>=-2) is still True

e To STOP the current loop iteration WITHOUT termination
the loop “continue” is used

e Statements that are after the “continue” are skipped
 The logical statement is re-evaluated

e Ifitis True, loop continues

e Ifitis False, loop terminates

Example

@om=5

while (denom>=-2):
if denom!=0:
print('Result is :' + str(10/denom))

else:
print('stopping the loop')
denom = denom - 1
continue

denom = denom - 1
print('still in the loop')

@nt('Loop is ended')

N

Output

Result 1s :2.0
Still 1n the loop
Result 1s :2.5
Still 1n the loop
Result 1s :3.3333333333333335
Still 1n the loop
Result 1s :5.0
Still 1n the loop
Result 1s :10.0
Still 1n the loop
Stopping the loop
Result 1s :-10.0
Still 1n the loop
Result 1s :-5.0
Still 1n the loop
Loop 1s ended

Difference of break and continue

° break

-~

while (logical_expression):
statement 1
statement 2
break
statement 3
statement 4

(statement outside the scope of while> €——

Difference of break and continue

e continue

-~

while (logical_expression): <«
statement 1
statement 2
continue
statement 3
statement 4

&statement outside the scope of while>

STRINGS

Python Variable Types

* Until now, scalar data types are used
» Scalar € variable stores a single value
— X =3 < scalar

— X =1[3, 5] €vector (in programming array and list are
used instead of vector)

 Numeric data types
— Integers
— Floating point numbers (floats)
— Complex numbers

* Boolean

Strings

e Strings are arrays of characters
e X="TEST STRING’

T E /s T | S| T R I[NIG

* Elements of an array can be reached using indexing

0123145/ 6]78]09 10
T E S T S T R I N G

e X[index] : Character at the location specified by index
* index has to be integer!

— X[0]=T"

—-X[7]1=? | R |

Strings

* Indices start with O

* Index O corresponds to the first letter of the string
e T='New String’

e T[0O]=? [‘N |

e T[15]=" Error !l Index out of range]

e Be carefull not to use an index that is out of range

* |len(variable_name) shows the length of the string that is
in the variable

e So index should start from 0 and go upto
len(variable _name)-1

Strings

//::> T="'New String' ‘\\\

>>> len (T)
10
>>> T[0]
TN
>>> T[len(T)-1]
g
>>> T[len(T)]
Traceback (most recent call last):
File "<string>", line 1, 1n <fragment>

\\iiiltins.lndexError: string 1ndex out of rangel///

Strings

Contrary to other programming languages, negative
indices can be used in Python

Negative indices start from the back of the string
11(-10] 9| 87| 6]5]|4]3]|-2]1
T E S T S T R I N G

X[-1] = ‘G’
X[-41=? R]
Negative indices start from -1 go down to -len(variable)

Smaller indices than —len(variable) will be out of range
and cause error

Strings

//::> T="'New String' ‘\\\

>>> len (T)

10

>>> T[—-1]
'g'

>>> T[-10]
'N'

>>> T[-11]

Traceback (most recent call last):
File "<string>", line 1, 1n <fragment>

\\iiiltins.lndexError: string 1ndex out of rangel///

String Slicing

* |tis possible to index a substring
* This is called ‘string slicing’

* |Instead of a single integer as an index, two integers
separated by a column is used:

index1l : index2

T~

‘ Index of the A 4 Index of the N
first letter in last letter + 1
' in the
\the substring)

_ substring y

String Slicing

e Aslice 4:8 means indices: 4-5-6-7

 The second integer index (8 in the sample above) is not
included

e |tis possible to use negative indices for slicing

//:;> T='This 1s a long test string' i\\

>>> T[0:5]
'"This '

>>> T[3:7]
's 1s'

>>> T[-5:-1]

\;frin' 4//

String Slices

 The second index should be smaller than the first
* Otherwise an empty string will be returned

~

>>> T='Thilis 1s a long test string'
>>> T[D5:4]

L |

>>> T[-2:3]

L |

N

String Slices

* Indices are not have to be sequential
* A third integer can be used to adjust the step size

index1 : index2 :step size
g Index of the A " Index of the)
first letter in last letter + 1
\the substring) in the

_ substring)

String Slices

For example
3:8:2 (stepsizeis 2)
means indices
3,5,7
If no step size is given, it is assumed to be 1
Step size can be negative
For example
-1:-7:-1
means
-1, -2, -3, -4, -5, -6

String Slices

String Slices

* If the first index is skipped (empty) the first possible
index will be used

//::> T='This i1is a long test string’
>>> T[:5]

'This

>>> T[:-1]

'This 1s a long test strin'

>>> T[:-10:-1]

'gnirts ts'

2N

N /

String Slices

* If the last index is skipped (empty) the last possible index
+ 1 (or -1) will be used

-~

>>>
>>>
'is

>>>

>>>

_

"1hT'

'"tring'

~

T='This 1s a long test string’
T[2:]

1s a long test string'
T[2::-1]

T[-5:]

String Operators

 +and * operators are defined with strings
 However they have other meanings

— ‘+’ means concatenation of strings

— “* means repetition of a string
e Examples

/>>> str1="Yellow" \ /

>>> str2="car’

>>> 3*str2

>>> str2="car’

>>> print strl+str2 : :
carcarcar

Yellowcar

o O\

Examples

/<:;> mystr="car'

>>> ('yellow'+mystr) *5
'vellowcaryellowcaryellowcaryellowcaryellowcar'
>>> 'yellow'+mystr*5

'vellowcarcarcarcarcar'

>>> 'yellow'*3+mystr*5
'vellowyellowyellowcarcarcarcarcar'

>>> ('yellow'*3+mystr) *2
\\Lﬁellowyellowyellowcaryellowyellowyellowcar'

2N

/

‘in” Operator

 The operator ‘in’ can be used to check the existence of a

character or a substring within a string
* ‘in” expression return a Boolean value

//::> T='Test string'

>>> 'Y' in T
False

>>> 'R' in T
False

>>> 'es!' in T
True

>>> 't s' in T
True

>>> 'esk' in T

\\iilse

~

String library

* There are many useful functions in string library
>>> Import string
e String library has the following functions

Functon [Meaning_____________________

capitalize(s) copy of s, with first character is capitalized

capwords(s) copy of s, with first character of each word is capitalized
center(s,width) center s in a field of given width

count(s,sub) count the number of occurances of substring sub in s
find(s,sub) find the first position where sub occurs in s

join(list) concatenate list of strings into one string

ljust(s,width) left justify s in a field of given width

lower(s) copy of s in all lowercase characters

Istrip(s) copy of s with leading white space removed

String Library

Functon | Meanmg_________

replace(s,oldsub,newsub)
rfind(s,sub)

rjust(s,width)

rstrip(s)

split(s)

upper(s)

replace occurances of oldsub with newsub
like find but returns the righ-most position
rigth justify s in a field of given width

sopy of s with trailing white space removed
splits s into a list of substrings

copy of s with all characters converted to upper case letters

Examples

* You can use these functions in two different ways

(» testString="today is rainy" \

>>> string.upper(testString)
'TODAY IS RAINY'

>>> print(testString)

today is rainy

>>> testString.upper|()
'TODAY IS RAINY'

>>> print(testString)

Qday is rainy /

Examples

(» string spIit(testString)

['today’, 'is', 'rainy']

>>> str|ng.fmd(testString,‘a')

3

>>> string.rfind(testString,'a’)

10

>>> string.replace(testString,'a’,"*")
'tod*y is r*iny’

>>> string.center(testString,50)

'k today is rainy ’

/

Examples

 Some of these function can take arguments to refine
their execution

* ‘find” method takes a second argument the index where
it should start searching

>>> str='Besiktas'
>>> str.find('s’,3)
7

* Third argument is the index where find should stop
searching

>>> str.find('s',3,5)
-1

Examples

* Second argument for split tells it which character

/substring to use for splitting

-

>>> string.split(testString,'a’)
['tod’, 'yisr', 'iny']

>>> string.split(testString,'ay')
['tod’, ' is rainy']

o

>~

Immutable

e Strings are immutable (read-only) arrays
 Once a string is generated,
— its characters can be accessed using indexes

— However, a character within the string cannot be
changed

/<:;> T='Test string’

>>> T[5]

lSl

>>> T[5]="K'

Traceback (most recent call last):

File "<string>", line 1, 1in <fragment>

builtins.TypeError: 'str' object does not support

\\¥ item assignment

\

/

String Comparison

 Two strings can be compared using

(1 (|t

_ l<l’ I>I’ l<=l’ l>=l

e If two strings are the same ‘==" returns True, otherwise it

returns False

~

String Comparison

If the strings are compared for equality, all characters
(including white spaces) should be the same.

‘1= is used to check if the strings are NOT the same.
If strings are not equal, it returns True.
If they are equal, it returns False.

True

>>> ‘3’ == ‘A’
True

lalzzlal

False

4 a[—— la 14

\\i%ue 4//

String Comparison

 How can we compare two strings for being greater or
smaller?

e ‘@< b’ ? True or False

e ASCIl were used to compare strings in Python 2.x
 Python 3.x uses Unicode encoding for strings

* To compare two strings

— Unicode for the first letter of both strings are
compared. If one is bigger than the other, the string
with the ‘bigger’ first letter is greater than the other.
Remaining letters of the strings are skipped.

String Comparison

— |If first letters are the same, second letters are
compared. If one is bigger than the other, the string
with the ‘bigger’ second letter is greater than the
other. Remaining letters of the strings are skipped.

— |f second letters are also the same, third letters are
compared. If one is bigger than the other, the string
with the ‘bigger’ third letter is greater than the other.
Remaining letters of the strings are skipped.

ASCII Table

Dec HxOct Char Dec Hx Oct Htrml Chr (Dec Hyx Qct Himl Chr| Dec Hx Oct Hitml Chr
0 0 000 NOL (rnull) 32 20 040 Z; Space| 64 40 100 d; [96 60 140 `
1 1 00l 30H (start of heading) 33 Z1 041 ! ! 65 41 101 «#65;: & | 97 /g1 141 a &
2 2 002 3T [start of text) 34 Z2 042 «#34:; 7 ae 42 102 &«#66; B 95 52 142] b
3 3 003 ETX [end of text) 35 Z3 043 # # 67 43 103 &«#67: C 99 53 143 Ϋ ¢
4 4 004 EOT [(end of transmission) 36 24 044 $ 5 65 44 104 A D (100 64 144 d d
5 5 005 ENQ (enquiry) 37 25 045 % % 69 45 105 &«#69; E [101 65 145 s#101; &
6 &6 006 ACE [acknowledge) 38 26 048 & & 70 46 106 F F (102 66 146 &#l02; €
7 7 007 BEL (bell) 39 27 047 ' 71 47 107 G G (103 &7 147 g:; O
§ & 0l0 BES (backspace) 40 25 050 (| 72 45 110 H H |104 65 150 h h
9 9 011 TAE [(hori=zontal tah) 4] 29 051)) 73 49 111 I I (105 69 151 &#l05; 1
10 & 012 LF (NL line feed, new line)| 42 24 052 &#d; * 74 4k 112 J J (106 64 152 &#l06; 7
11 B 013 VT [wertical tahb) 43 2B 053 + + 75 4B 115 K E (107 6B 153 «#107: k
12 C 0l4 FF (NP form feed, new page)| 44 2C 054 s#dd; |, 76 AC 114 «#76; L |l05 6C 154 l 1
13 D 015 CE [(carriage return) 45 20 055 - - 77 4D 115 M: M |109 6D 155 l09; m
14 E 0le 30 (shift out) 45 2ZE 056 . . 78 4E 116 N N [110 6E 156 l0; n
15 F 017 3T (shift im) 47 2F 087 /: F 79 4F 117 O 0 |111 AF 157 l11:; o
la 10 020 DLE (data link escape) 45 30 060 - 0 g0 50 1z0 «#30; P |112 70 le0 &#ll: b
17 11 021 DCl (dewice control 1) 49 31 0/l =#49; 1 g1 51 121 «#81; 0 [113 71 161 l35:; d
1d 12 022 DC:2 (dewice control Z) 50 32 0/2 2 2 g2 52 122 «#32; R [114 72 162 «#lld: ¢
19 13 023 DC3 (dewice control 3) 51 33 0/3 3 3 83 53 123 «#33; 5 |115 73 163 «#115; =
20 14 024 DCd (dewice control 4) 52 34 0fpd 4: 4 g4 54 124 «#534; T (116 74 164 &#lle; ©
21 15 025 NAE (negatiwe acknowledge) 53 35 065 5: 5 85 55 1zZ5 ɉ T |117 75 1la5 u: u
22 la 026 3¥N (synchronous idle) 54 36 066 6 6 g6 56 1zZo «#86; V |11 76 lee s v
23 17 027 ETE (end of trans. block) 55 37 067 7: 7 g7 57 1zZ7 W: W |119 77 1la7 w:; w
24 18 030 CAN (cancel) 56 38 070 &«#56; 8 858 58 130 «#88; X |120 75 170 :£0;
25 12 031 EM (end of medium) 57 39 071 «#57: 9 89 59 131 ɍ T |121 79 171 &1: ¥
26 1& 032 3UE [(substitute) 58 34 072 : : a0 54 132 «#90; 2 |12Z2 Ta 172 &#l£2; €
27 1B 033 E3C [(escape) 59 3B 073 ; ; 91 5B 135 «#91; [(123 7B 173 &#l23; |
28 1C 034 F3 (file =zeparator) 60 3C 074 < < 92 5C 134 \ ' (124 7C 174 s#124; |
29 1D 035 33 [group separator) 6l 3D 075 l; = 93 5D 135]] (125 7D 175 &#l25; |}
30 1E 036 R3 (record separator) 6z 3E 076 Z; = 94 5E 136 «#94: ~ |126 TE 176 &#l&6; ~
31 1F 037 U35 [(unit separator) 63 3F 077 ? 7 95 5F 137 «#95; [1z7 7F 177 «#l27; DEL

Source: www.LookupTables .com

Unicode

Codepage 857 - Latin 5 (Turkey)

0 1 2 3 4 5 -6 7 8 9 -A -B -C -D -E -F
O @ ¥ |e & o e Plo @ clg]|r] a3k
2634 2EIB 2665 2866 2683 FE60 fedu ke 2508 25CE 2508 2842 2640 288A 2668 2630

> AT | N[[§|™|L|[+]|+]|>|«|]|eo|A|T

2EBA 2504 2195 20460 DB a0A7 2540 21AE 21 2183 19 2190 2F 2184 2582 %80
Pt # |8 (% (& | (|2], |-

[wi=]] oz [Vi=rg o3 =2y oo2s T02E omr 00z8 [=] TazA DIZE oic oD 0RE omF

0|12 [3|4 |56 |7 |8|9|:]|;:|<|=|>]2?

0oan Ll [[e]ekn] 0034 ap3s L] aoa7 0a3e 0039 D03 D03 0Oac o030 Q03E Q0IF

@(A B(C/ D E|F|G|H|I|[J|K L M|N|O

L0 aaal ik andd Dida ands Lol anar 0dag e8] Ll e DB D04 0040 A4E QAodF

P R S| TIUIV W X |Y|Z|[|\|]1|"]_-

o0 0aE [anE3 [an&s 0056 asy il) 005 Ui 0050 0050 A05E ansF

“la|b|lc|d|e|f h|i|j|k|]l|m|n|o

DO60 aoE1 [ansd (e T anes DOGE falr g [DoGo DOEA DOGE DG D0E0 Q0EE Q0SF

r|s|tlu|v | w|x|y|z | ~ O

[in] aar [virrd aor3 [irey aors TTE o 0078 Dore TO7A DITE oo W7D 07E 23m

Cli|é|a|alals elele|i|[f|1[AA

[ilex) 0IFC GOED 0EZ ODEd Q0ED ES OnET GOEA Q0EB 00ES JEF Q0EE 3 i) ancs

rd i1

E olala|l|O0 | £ 0

face ooFz JoFe 0OF8 0130 fualals] aaoc DOFE 00A3 e} 015E 015F

4 N|G Cl® A%l] «|»

0ET (Lol [R1= 0F anar Qe anac GIBD noac 00a1 anag ooep

Fd -~ -~ J J
A|lA|A|@|T (| ¢ ¥ |

2801 DG onc2 ooco k=g 2583 2551 2557 2850 ooAzZ 0nas 2510

= | a2 | L JL | | L= |2

L +|a | A El |5 F|=]|a)| "

2514 253C [Le1=] cs 2554 2554 2669 2566 2560 2580 256C oA

el . - A

: el |/ /M im0 ™

abEs 2040 OGO DOCE MACF 2518 2500 2588 2584 O0AE [ia]eley 2560

rd — rd ~ S

0 O|p x |[UlU|U| 1 N

0003 0IDF oana o002 QOF5 nons mes anp? 0a0A anpa ne DOEC DOFF DOAF B4

- B 9§ = .| -3 m

0aAD Lol O0BE DB anay QoF7 aneE Ll) L] oapF [e:] 0B DoE2 2540 [eeLi]

