
ISE 101 – Introduction to Information Systems

• Lecture 3 Objectives:

– While loops

– Strings

While Loops

• Write a Python script that computes the sum of squares

from 1 to 5.

sum = 0;

sum = sum + 1**2;
sum = sum + 2**2;
sum = sum + 3**2;
sum = sum + 4**2;
sum = sum + 5**2;

print('Sum of squares: ' + str(sum))

While Loops

• Write a Python script that computes the sum of squares

from 1 to 150.

sum = 0;

sum = sum + 1**2;
sum = sum + 2**2;
…
sum = sum + 149**2;
sum = sum + 150**2;

print('Sum of squares: ' + str(sum))

Loops

• Sometimes a portion of the code has to be repeated

many times.

• In the previous example, the square and summation have

to be repeated 150 times.

initialize

sum=0

num=0

num

<=

150

Display sum

sum=sum+num**2
TRUE

FALSE

num=num+1

While Loops

• Write a Python script that computes the sum of squares

from 1 to 150.

sum = 0
num = 0
while num<=150:

sum = sum + num**2
num = num + 1

print('sum of squares: ' + str(sum))

While Loop

while (logical_expression):

statement 1

statement 2

statement 3

Use colon after the

logical expression

TABS are used to

determine the

scope of while loop

Statements in the scope are

executed if the logical

expression is True

While Loop

while (logical_expression):

statement 1

statement 2

statement 3

else:

statement 4

statement 5

statement 6

Statements in this scope are

executed if the logical

expression is False

While Loop

• Statements within the scope of the while loop are

executed if the logical statement produces TRUE

• If the logical statement generates FALSE, the statements

within the scope are skipped.

• The result of the logical expression changes within the

loop

• If the logical expression gives TRUE, it becomes an

infinite loop

• Infinite loops never end

While Loop

while (True):

statement 1

statement 2

statement 3

while (3 < 5):

statement 1

statement 2

statement 3

Infinite Loops

• What is the problem with the following algorithm?

• Variable num is not incremented.

• Therefore, (num<=150) will always produce True.

• This is an infinite loop, that never ends.

initialize

sum=0

num=0

num

<=

150

Display sum

sum=sum+num**2
TRUE

FALSE

Pre-test and Post-test Loops

Pre-test loop

• Pre-test loop controls a

logical expression before the

loop

• While loop is pre-test loop

• The logical statement after

while is tested

• If it produces True, the

statements within the scope

are executed

Post-test loop

• Post-test loop controls a

logical expression after the

loop

• It executes the statements

within the scope of the loop

• It checks a logical expression

• If it produces True, loop

continue

• There is no post-test loop in

Python

• In C, do/while loop is an

example of post-test loop

Example

• Write a Python script that

– generates a random number

– asks the user to guess the random number until the

guess is equal to the random number

import random

random_number = random.randint(0,10)
user_guess=-1

while random_number!=user_guess:
user_guess=int(input('Enter an integer : '))

print('Correct')

Example

• Write a Python script that computes the average of even

integers between 1-100

sum = 0
num = 1
N=0

while num<=100:
if num%2==0:

sum = sum + num
N = N+1

num = num + 1

print('Average of even numbers between 1-100 : '
+ str(sum/N))

Example

• Write a Python script that gets floating point numbers

from the user and adds them up until the sum is greater

than 100

sum = 0

while sum<=100:
num=float(input('Enter another number: '))

sum = sum + num

print('Sum : ' + str(sum))

Example

• Write a Python script that finds and prints how many

numbers there are between 1-1000 which are a multiple

of 7.

num=1
N_multiple=0

while num<=1000:
if num%7==0:

N_multiple = N_multiple + 1
num = num + 1

print('There are ' + str(N_multiple) + ' multiples

of 7 between 1-1000')

Break

• Sometimes, the loop has to be stopped

• “break” is used within the loop to stop the loop

• Loop is terminated

• Once the loop is stopped using break, statements within

the scope of the loop (that are after break) are skipped.

Example

denom=5

while (denom>=-2):
if denom!=0:
print('Result is :' + str(10/denom))

else:
print('Stopping the loop')

break

denom = denom - 1
print('Still in the loop')

print('Loop is ended')

Output

Result is :2.0

Still in the loop

Result is :2.5

Still in the loop

Result is :3.3333333333333335

Still in the loop

Result is :5.0

Still in the loop

Result is :10.0

Still in the loop

Stopping the loop

Loop is ended

Continue

• In the previous example, results of 10/-1 and 10/-2 are

not printed

• Because of break, the while loop is terminated when

denom is 0

• Logical expression (denom>=-2) is still True

• To STOP the current loop iteration WITHOUT termination

the loop “continue” is used

• Statements that are after the “continue” are skipped

• The logical statement is re-evaluated

• If it is True, loop continues

• If it is False, loop terminates

Example

denom=5

while (denom>=-2):
if denom!=0:
print('Result is :' + str(10/denom))

else:
print('Stopping the loop')

denom = denom - 1
continue

denom = denom - 1
print('Still in the loop')

print('Loop is ended')

Output

Result is :2.0

Still in the loop

Result is :2.5

Still in the loop

Result is :3.3333333333333335

Still in the loop

Result is :5.0

Still in the loop

Result is :10.0

Still in the loop

Stopping the loop

Result is :-10.0

Still in the loop

Result is :-5.0

Still in the loop

Loop is ended

Difference of break and continue

• break

while (logical_expression):
statement 1
statement 2
break
statement 3
statement 4

<statement outside the scope of while>

Difference of break and continue

• continue

while (logical_expression):
statement 1
statement 2
continue
statement 3
statement 4

<statement outside the scope of while>

STRINGS

Python Variable Types

• Until now, scalar data types are used

• Scalar � variable stores a single value

– X = 3 � scalar

– X = [3, 5] �vector (in programming array and list are

used instead of vector)

• Numeric data types

– Integers

– Floating point numbers (floats)

– Complex numbers

• Boolean

Strings

• Strings are arrays of characters

• X=‘TEST STRING’

• Elements of an array can be reached using indexing

• X[index] : Character at the location specified by index

• index has to be integer!

– X[0]=‘T’

– X[7]=?

0 1 2 3 4 5 6 7 8 9 10

T E S T S T R I N G

T E S T S T R I N G

‘R’

Strings

• Indices start with 0

• Index 0 corresponds to the first letter of the string

• T=‘New String’

• T[0] = ?

• T[15] = ?

• Be carefull not to use an index that is out of range

• len(variable_name) shows the length of the string that is

in the variable

• So index should start from 0 and go upto

len(variable_name)-1

‘N’

Error !!! Index out of range

Strings

>>> T='New String'

>>> len(T)

10

>>> T[0]

'N'

>>> T[len(T)-1]

'g'

>>> T[len(T)]

Traceback (most recent call last):

File "<string>", line 1, in <fragment>

builtins.IndexError: string index out of range

Strings

• Contrary to other programming languages, negative

indices can be used in Python

• Negative indices start from the back of the string

• X[-1] = ‘G’

• X [-4] = ?

• Negative indices start from -1 go down to -len(variable)

• Smaller indices than –len(variable) will be out of range

and cause error

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

T E S T S T R I N G

‘R’

Strings

>>> T='New String'

>>> len(T)

10

>>> T[-1]

'g'

>>> T[-10]

'N'

>>> T[-11]

Traceback (most recent call last):

File "<string>", line 1, in <fragment>

builtins.IndexError: string index out of range

String Slicing

• It is possible to index a substring

• This is called ‘string slicing’

• Instead of a single integer as an index, two integers

separated by a column is used:

index1 : index2

Index of the

first letter in

the substring

Index of the

last letter + 1

in the

substring

String Slicing

• A slice 4:8 means indices: 4-5-6-7

• The second integer index (8 in the sample above) is not

included

• It is possible to use negative indices for slicing

>>> T='This is a long test string'

>>> T[0:5]

'This '

>>> T[3:7]

's is'

>>> T[-5:-1]

'trin'

String Slices

• The second index should be smaller than the first

• Otherwise an empty string will be returned

>>> T='This is a long test string'

>>> T[5:4]

''

>>> T[-2:3]

''

String Slices

• Indices are not have to be sequential

• A third integer can be used to adjust the step size

Index of the

first letter in

the substring

Index of the

last letter + 1

in the

substring

index1 : index2 : step_size

String Slices

• For example

3:8:2 (step size is 2)

means indices

3, 5, 7

• If no step size is given, it is assumed to be 1

• Step size can be negative

• For example

-1:-7:-1

means

-1, -2, -3, -4, -5, -6

String Slices

>>> T='This is a long test string'

>>> T[2:9:3]

'iia'

>>> T[1:7]

'his is'

>>> T[11:7:-1]

'ol a'

>>> T[-1:-len(T)-1:-1]

'gnirts tset gnol a si sihT'

T[-1:-len(T)-1:-1] inverts the string

String Slices

• If the first index is skipped (empty) the first possible

index will be used

>>> T='This is a long test string‘

>>> T[:5]

'This '

>>> T[:-1]

'This is a long test strin'

>>> T[:-10:-1]

'gnirts ts'

String Slices

• If the last index is skipped (empty) the last possible index

+ 1 (or -1) will be used

>>> T='This is a long test string‘

>>> T[2:]

'is is a long test string'

>>> T[2::-1]

'ihT'

>>> T[-5:]

'tring'

String Operators

• + and * operators are defined with strings

• However they have other meanings

– ‘+’ means concatenation of strings

– ‘*’ means repetition of a string

• Examples

>>> str1="Yellow"

>>> str2='car'

>>> print str1+str2

Yellowcar

>>> str2='car'

>>> 3*str2

'carcarcar'

Examples

>>> mystr='car'

>>> ('yellow'+mystr)*5

'yellowcaryellowcaryellowcaryellowcaryellowcar'

>>> 'yellow'+mystr*5

'yellowcarcarcarcarcar'

>>> 'yellow'*3+mystr*5

'yellowyellowyellowcarcarcarcarcar'

>>> ('yellow'*3+mystr)*2

'yellowyellowyellowcaryellowyellowyellowcar'

‘in’ Operator

• The operator ‘in’ can be used to check the existence of a

character or a substring within a string

• ‘in’ expression return a Boolean value

>>> T='Test string'

>>> 'Y' in T

False

>>> 'R' in T

False

>>> 'es' in T

True

>>> 't s' in T

True

>>> 'esk' in T

False

String library

• There are many useful functions in string library

>>> import string

• String library has the following functions

Function Meaning

capitalize(s) copy of s, with first character is capitalized

capwords(s) copy of s, with first character of each word is capitalized

center(s,width) center s in a field of given width

count(s,sub) count the number of occurances of substring sub in s

find(s,sub) find the first position where sub occurs in s

join(list) concatenate list of strings into one string

ljust(s,width) left justify s in a field of given width

lower(s) copy of s in all lowercase characters

lstrip(s) copy of s with leading white space removed

String Library

Function Meaning

replace(s,oldsub,newsub) replace occurances of oldsub with newsub

rfind(s,sub) like find but returns the righ-most position

rjust(s,width) rigth justify s in a field of given width

rstrip(s) sopy of s with trailing white space removed

split(s) splits s into a list of substrings

upper(s) copy of s with all characters converted to upper case letters

Examples

• You can use these functions in two different ways

>>> testString="today is rainy"

>>> string.upper(testString)

'TODAY IS RAINY'

>>> print(testString)

today is rainy

>>> testString.upper()

'TODAY IS RAINY'

>>> print(testString)

today is rainy

Examples

'

>>> string.split(testString)

['today', 'is', 'rainy']

>>> string.find(testString,'a')

3

>>> string.rfind(testString,'a')

10

>>> string.replace(testString,'a',"*")

'tod*y is r*iny‘

>>> string.center(testString,50)

' today is rainy ‘

Examples

• Some of these function can take arguments to refine

their execution

• ‘find’ method takes a second argument the index where

it should start searching

>>> str='Besiktas'

>>> str.find('s',3)

7

• Third argument is the index where find should stop

searching

>>> str.find('s',3,5)

-1

Examples

• Second argument for split tells it which character

/substring to use for splitting

>>> string.split(testString,'a')

['tod', 'y is r', 'iny']

>>> string.split(testString,'ay')

['tod', ' is rainy']

Immutable

• Strings are immutable (read-only) arrays

• Once a string is generated,

– its characters can be accessed using indexes

– However, a character within the string cannot be

changed

>>> T='Test string'

>>> T[5]

's'

>>> T[5]='K'

Traceback (most recent call last):

File "<string>", line 1, in <fragment>

builtins.TypeError: 'str' object does not support
item assignment

String Comparison

• Two strings can be compared using

– ‘==‘, ‘!=‘

– ‘<‘, ‘>’, ‘<=‘, ‘>=‘

• If two strings are the same ‘==‘ returns True, otherwise it

returns False

>>> ‘a’ == ‘b’

False

>>> ‘a’ == ‘A’

False

‘a’==‘a’

True

‘ a’ == ‘a’

False

String Comparison

• If the strings are compared for equality, all characters

(including white spaces) should be the same.

• ‘!=‘ is used to check if the strings are NOT the same.

• If strings are not equal, it returns True.

• If they are equal, it returns False.

>>> ‘a’ != ‘b’

True

>>> ‘a’ == ‘A’

True

‘a’==‘a’

False

‘ a’ == ‘a ’

True

String Comparison

• How can we compare two strings for being greater or

smaller?

• ‘a’ < ‘b’ ? True or False

• ASCII were used to compare strings in Python 2.x

• Python 3.x uses Unicode encoding for strings

• To compare two strings

– Unicode for the first letter of both strings are

compared. If one is bigger than the other, the string

with the ‘bigger’ first letter is greater than the other.

Remaining letters of the strings are skipped.

String Comparison

– If first letters are the same, second letters are

compared. If one is bigger than the other, the string

with the ‘bigger’ second letter is greater than the

other. Remaining letters of the strings are skipped.

– If second letters are also the same, third letters are

compared. If one is bigger than the other, the string

with the ‘bigger’ third letter is greater than the other.

Remaining letters of the strings are skipped.

– …

ASCII Table

Unicode

