ISE 101 — Introduction to Information Systems

* Lecture 1 Objectives:
— General information on Python programming language
— |dentifier names
— Printing information
— Getting input from users

Programming Languages

* Programming Languages

—C
— C++

Each programming language has
its own “syntax”

— Java
— Perl

These languages are called high
level computer languages

— C#
— PHP

Hardware can only undestand
and execute machine code

— Python
— Pascal

*Software development in
machine code is really hard
(Opcodes — assembly)

*Software in machine code is fast

Programming Languages

Programs written with high level computer languages
need to be translated into machine language

Machine language depends on the CPU type

Programs written in machine code for Intel CPU do not
work with PowerPC CPU or any other.

Software written in machine code is highly hardware
dependent = No portability.

However, they are fast.

Each high level programming language can be
— Compiled

— Interpreted

to translate into machine code

Compile

A compileris a complex computer program that takes
another program written in a high-level language and
translates it into machine code

* High level program is called “source code”

 The output of compiling is a machine code program that
the computer can directly execute

* Not as fast as programs written directly in machine code,
but can still be considered fast.

e Source code is portable but it has to be compiled for each
hardware platform

e Source code is re-usable (as it is independent of hardware)

Interpreter

* Aninterpreter is a program that simulates a computer
that understands a high-level language

* |Instead of translating the source code into machine code,
the interpreter analyzes and executes the source code
instruction-by-instruction.

e Source code is relatively slow as each instruction has to
go through the interpreter for execution

e Source code is very portable (the hardware depence is on
the interpreter. There should be an interpreter for each
hardware or OS)

* Highly re-usable

Compiling vs Interpretation

Compiling is a one-shot translation into machine
language.

A source code is compiled once and an executable
software is generated. This executable can be run over
and over again

Source code and compiler is not required anymore for
execution.

Interpreter and source code are required every time for
program execution.

Compiled programs are faster than interpreted programs
nterpreted software is more flexible for development

nterpreted software is also more portable for different
nardware and OS platforms.

Other Languages

* There exits some languages (java, c#) that are compiled
into machine language for a virtual CPU

 For each CPU and OS, a virtual machine software
executes the developed program

* This is a hybrid mode with both compilation and
Interpretation

* Gets best of each = portability + speed
 More portable than compiled programs
e Faster than interpreted programs

Python

 InISE 101, we are going to learn and use Python
programming language

 Why Python instead of other programming languages?
— Easy syntax
— Easy debugging
bug: errors in a program
debug: process of finding and fixing bugs
— Focus
less on the programming language
more on designing algorithms for solving problems

Python

 InISE 101, we are going to learn and use Python
programming language

— Interpreted high-level programming language

— Many libraries are available (scientific computation,
visualization, games etc.)

— Used in software industry for professional code
development

* Python can be used
— Interactive mode
— Scripts

Python versions

* Python versions 2.x and 3.x have minor changes in syntax
* For example:
— Python 2.x
print “Hello”
or
print(“Hello”)
— Python 3.x
print(“Hello”)
* Please use Python version 3.x (Latest version)
* Download from http://www.python.org

Integrated Development Environment (IDE)

Larger software projects require complicated
development tools that have

— integrated editor (with syntax highlighting)
— integrated python shell
— integrated debugging tool

Such development environment software is called
“Integrated Development Environment” (IDE)

Wing101 will be used in this course (you can use other
IDEs such as Eclipse)

Download Wing101

http://wingware.com/downloads/wingide-101

Interactive Mode

[& Python Shell

= [=

File Edit Shell Debug Options Windows Help
Python 2.6.3 (r263rcl:75186, Oct 2

on win32

Type "copyright”, "credits"™ or "license ()" for more information.

R R R R R R R R R R R o R o R R o o R R o R o R R
Personal firewall software may warn about the connection IDLE
makes to its subprocess using this computer's internal loopback
interface. This connection is not wisible on any external

interface and no data is =sent to or received from the Internet.
R R

IDLE 2.6.3
e ey

2 2008, 20:40:30) [MSC v.1500 32 bit (Intel)}] =]

=}

Ln:12|Col: 4

Interactive Mode

Python interpreter (called IDLE) can be started in
interactive mode

In this mode, “>>>" prompt indicates that the interpreter
is ready for a command

User writes a command in the proper syntax and after
ENTER is pressed, the command is executed and the
result of this single command is displayed on screen.

This mode is good for trying out new things in Python
For example:

>>> print 1+2
3

Script Mode

All definitions (like functions) and variables are lost when
we quit the interpreter

This mode is not suitable for code development

Code development is done by listing commands in file
that is called a module or script

Simple scripts can be written in any text processing
program.

However, medium or large sized software projects cannot
be developed in “notepad”

Integrated development environment (IDE) are used for
these projects (Eclipse etc.)

Script Mode

Once the scripts are written, they should be given a
filename with “.py” extension

These script files can be executed by double-clicking on
the file

or

“python filename.py” from commandline or terminal
or

From the Python interpreter

>>> import filename

Script Mode

e Sample script

File: test.py

A simple program for demonstration purpose

Def main() :
print “Demo program”
x=1input (“Enter a number between 0 and 1: “)
for i in range(10):
X=x*(1-x)
print x

main ()

Intermediate Python Files

When a module is imported or executed first time, a file
with “.pyc” extension is created

This is an intermediate file for Python

Python (as java and c#) uses a hybrid compiling /
Interpreting process

Python source is compiled into more primitive
instructions called byte code

This makes the execution faster

If you delete the byte code, Python will regenerate it
again

First Python Script

 Write a python script that computes the perimeter of a
circle whose radius is 3.2 cm.

* |If you cannot solve a problem manually, you cannot
design an algorithm and implement it.

* Perimeter of a circle =2 * pi * radius

radius = 3.2
pi = 3.14

perimeter = 2 ¥ pi * radius

print('Perimeter of the circle is '\
+ str(perimeter))

Elements of Programs

Names: Names are assigned to variables, functions etc.
These names are called identifiers
Python (and many of the other programming languages)

has rules about how identifiers are formed

digits or underscores
Counterl

_CityName
name_surname

password4you

Every identifier must begin with a letter or underscore
“ " which may be followed by any sequence of letter,

3cities

big+city
Anew_variable
good@school

Elements of Programs

* An identifier cannot contain any spaces

new constant

e |dentifiers are case-sensitive
art Art aRt arT ARt aRT ART (all different variables)

e |dentifiers can be chosen freely. However it is really
important to choose intelligent identifiers.

Good Choices for Identifiers

 Important aspects of coding
— Readability:

The code should be easily understood by others and
by you

After many years, you have to read your own code !

— Reusability

Code Readability

e What is the difference between

radius = 3.2
pi = 3.14

perimeter = 2 * pi * radius

print('Perimeter of the circle is '\
+ str(perimeter))

r= 3.2
r23 = 3.14

p=2%r*r23

print(str(perimeter))

Code Readability

* Even better 2 use comments as much as possible

This code computes the perimeter of circle
whose radius is 3.2 cm

radius of the circle
radius = 3.2

math constant pi
pi = 3.14

perimeter is computed as 2 times pi times radius
perimeter = 2 * pi ¥ radius

print out the results
print('Perimeter of the circle is '\

+ str(perimeter))

Naming Conventions for Identifiers

 There are many conventions available for naming
conventions.

* Conventions are available on the Internet
 Choose a convention and stick to it throughout the code
* In this course we will use either
— Camelcase
— Snakecase
* You can use anyone.
* Do not use both convention within the same code

Naming Conventions

Camelcase convention
All white spaces and punctuations are removed
First letter of each world is capitalized

big city traffic = BigCityTraffic
my brother’s car > MyBrothersCar
midterm #1 grade 2 Midterm1Grade

Naming Conventions

* Snakecase convention
All punctuations are removed
White spaces are replaced with underscore sign

big city traffic 2 big city_ traffic
my brother’s car 2 my brothers car
midterm #1 grade 2 midterm_1 grade

ldentifiers

 Some of the names are reserved for Python statements
e These reserved words cannot be used for identifiers
e These reserved words are

and del for is raise
assert elif from lambda return
break else global not try
class except if or while
continue exec import pass yield
def finally in print

Expressions

* Fragments of code that produce or calculate new data
values are called expressions

e Simplest kind of expressions is literal

* A literal is used to indicate a specific value
>>> pi=3.14
3.14 is a numeric literal

 More complex expressions can be constructed by
combining expressions with operators

e Spaces within expressions are ighored. However, spaces
should be used for easy reading.

Python Mathematical Operators

e Python operators are
— Addition (+)
— Subtraction (-)
— multiplication (*)
— division (/)

— exponentiation (**)

Operator Precedence

 Some operators have precedence over others
* Order of precedence from high to low

— Paranthesis

— Exponential

— Multiplication and division

— Addition and subtraction

Example

 Write a python code that converts fahrenheit to celcius
 Fahrenheit = 9*Celcius/5 + 32

celcius=100

fahrenheit=9*celcius/5+32

print("celcius: " + str(celcius) +
" = fahrenheit: " + str(fahrenheit))

Output Statements

 “print” command is used in Python to display
information on screen

e print command can be used as
print (“something to display on screen”)
e Examples

print (“message part 1” + “message part 2”)
print (“2 * 5 =" + str (10))

* +is used to combine strings
“message ” + “combined” =2 “message combined”

e str(...) is used to convert another type (such as integer,
float etc. = will be shown later) into a string

Assigning Input

Purpose of an input statement is to get some information
from the user and store it into a variable

This is accomplished using an assignment statement
combined with a special expression called “input”.

<variable>=input(<prompt>)

Prompt is an expression that serves to prompt the user
for input. This is almost always a string literal

>>> x = input(“Enter a value between 0 and 1”)

Then it pauses and waits for user to type an expression
and press <Enter> key.

Assinging Input

e After the user hits <Enter> key, the input is assigned to
the variable

* For example

>>> temp = 1nput (“Enter the temperature: “)
Enter the temperature: 30

>>> print (temp)

23

 The input is assighed as a string

* To convert string into an integer use int(...)

* To convert string into a floating number use float(...)
* Integers: -2, 45, 237

* Floating point numbers: 3.45, 0.004, -4.53

Assignment Statements

e Basic assighment statement in Python is
<variable> = <expr>

* This is an assignment NOT equality
i =i+ 1 (this equality is never correct)

e Left side expression is evaluated and its result is assighed
to the variable on the right side.

fahrenheit =9.0 / 5.0 * celcius + 32

* Avariable can be assigned a value many times. It retains
the value of the latest assignment

Simultaneous Assignment

Alternative to a single assignment , we can calculate and
assign many values at the same time

<var>, <var>, ..., <var> = <expr>, <expr>, ..., <expr>
This is called simultanous assignment

All of the expressions on the right hand side are
evaluated and their results are assigned to the
corresponding variable at the left-hand side

>>> sum, diff = x+y, x-y
This is equivalent to
>>> sum = X+y

>>> diff = x-y

Example

 Write a Python script that computes the sum of squared
numbers between 1 to 3.

total=0

total=total+1*%*2
total=total+2*%*2
total=total+3**2

print("Total is "+str(total))

Example

 Write a Python script that
1) gets the temperature from the user (in Celcius)
2) converts it to Fahrenheit
3) prints it on screen.

tmp=input("Enter temperature in Celcius: ")

celcius=float(tmp)
fahrenheit=9*celcius/5+32

print("Celcius: "+ str(celcius)
+ "= Fahrenheit: " + str(fahrenheit))

Example

Write a Python script that

1) gets the 3 numbers from the user
2) computes their average

3) prints it on screen.

numbers=input('Enter 3 numbers: ')

numl,num2,num3=eval(numbers)

avg=1/3*(num1 + num2 + num3)
print("Average of " + str(numl) + " " +

str(hum2) + " " +
str(num3) + " is " + str(avg))

Example

numbers=input('Enter 3 numbers: ')

numl,num2,num3=eval(numbers)

avg=1/3*(num1l + num2 + num3)
print("Average of " + str(numl) + " " +

str(hnum2) + " " +
str(num3) + " is " + str(avg))

* Values should be seperated using commas

Enter 3 numbers: 1,2,9
Average of 1 2 9is 4.0

Example

Write a Python script that

1) gets the radius from the user
2) computes the area of the circle
3) prints it on screen.

radius=float(input("Enter the radius: "))

area=radius**2

print("radius: "+ str(radius)
+ "-—> area: " + str(area))

Example

 Write a program that converts US Dollars to a Turkish
Lira:

e get the amount of USD to be converted from the user
» get the exchange rate (US/TL) from the user
* prints the TL amount

radius=float(input("Enter the radius: "))

area=radius**2

print("radius: "+ str(radius)
+ "-—> area: " + str(area))

Example

USD=float(input('Enter the amount of USD: '))
exchange_rate=float(input('Enter exchange rate USD/TL: '))

TL = USD * exchange_rate

print(str(USD) + ' usp = ' + str(TL) + 'TL"')

 Qutput

Enter the amount of USD: 10
Enter exchange rate USD/TL: 1.82
10.0 USD = 18.2TL

