
ISE 101 – Introduction to Information Systems

• Lecture 1 Objectives:

– General information on Python programming language

– Identifier names

– Printing information

– Getting input from users– Getting input from users

Programming Languages

• Programming Languages

– C

– C++

– Java

– Perl

Each programming language has

its own “syntax”

These languages are called high

level computer languages– Perl

– C#

– PHP

– Python

– Pascal

– …

Hardware can only undestand

and execute machine code

•Software development in

machine code is really hard

(Opcodes – assembly)

•Software in machine code is fast

Programming Languages

• Programs written with high level computer languages
need to be translated into machine language

• Machine language depends on the CPU type

• Programs written in machine code for Intel CPU do not
work with PowerPC CPU or any other.

• Software written in machine code is highly hardware • Software written in machine code is highly hardware
dependent � No portability.

• However, they are fast.

• Each high level programming language can be

– Compiled

– Interpreted

to translate into machine code

Compile

• A compiler is a complex computer program that takes

another program written in a high-level language and

translates it into machine code

• High level program is called “source code”

• The output of compiling is a machine code program that

the computer can directly executethe computer can directly execute

• Not as fast as programs written directly in machine code,

but can still be considered fast.

• Source code is portable but it has to be compiled for each

hardware platform

• Source code is re-usable (as it is independent of hardware)

Interpreter

• An interpreter is a program that simulates a computer

that understands a high-level language

• Instead of translating the source code into machine code,

the interpreter analyzes and executes the source code

instruction-by-instruction.

• Source code is relatively slow as each instruction has to • Source code is relatively slow as each instruction has to

go through the interpreter for execution

• Source code is very portable (the hardware depence is on

the interpreter. There should be an interpreter for each

hardware or OS)

• Highly re-usable

Compiling vs Interpretation

• Compiling is a one-shot translation into machine
language.

• A source code is compiled once and an executable
software is generated. This executable can be run over
and over again

• Source code and compiler is not required anymore for
execution.execution.

• Interpreter and source code are required every time for
program execution.

• Compiled programs are faster than interpreted programs

• Interpreted software is more flexible for development

• Interpreted software is also more portable for different
hardware and OS platforms.

Other Languages

• There exits some languages (java, c#) that are compiled

into machine language for a virtual CPU

• For each CPU and OS, a virtual machine software

executes the developed program

• This is a hybrid mode with both compilation and

interpretationinterpretation

• Gets best of each � portability + speed

• More portable than compiled programs

• Faster than interpreted programs

Python

• In ISE 101, we are going to learn and use Python

programming language

• Why Python instead of other programming languages?

– Easy syntax

– Easy debugging

bug: errors in a program

debug: process of finding and fixing bugs

– Focus

less on the programming language

more on designing algorithms for solving problems

Python

• In ISE 101, we are going to learn and use Python

programming language

– Interpreted high-level programming language

– Many libraries are available (scientific computation,

visualization, games etc.)

Used in software industry for professional code – Used in software industry for professional code

development

• Python can be used

– Interactive mode

– scripts

Python versions

• Python versions 2.x and 3.x have minor changes in syntax

• For example:

– Python 2.x

print “Hello”

oror

print(“Hello”)

– Python 3.x

print(“Hello”)

• Please use Python version 3.x (Latest version)

• Download from http://www.python.org

Integrated Development Environment (IDE)

• Larger software projects require complicated

development tools that have

– integrated editor (with syntax highlighting)

– integrated python shell

– integrated debugging tool

• Such development environment software is called

“Integrated Development Environment” (IDE)

• Wing101 will be used in this course (you can use other

IDEs such as Eclipse)

• Download Wing101

http://wingware.com/downloads/wingide-101

Interactive Mode

Interactive Mode

• Python interpreter (called IDLE) can be started in

interactive mode

• In this mode, “>>>” prompt indicates that the interpreter

is ready for a command

• User writes a command in the proper syntax and after

ENTER is pressed, the command is executed and the ENTER is pressed, the command is executed and the

result of this single command is displayed on screen.

• This mode is good for trying out new things in Python

• For example:

>>> print 1+2

3

Script Mode

• All definitions (like functions) and variables are lost when

we quit the interpreter

• This mode is not suitable for code development

• Code development is done by listing commands in file

that is called a module or script

Simple scripts can be written in any text processing • Simple scripts can be written in any text processing

program.

• However, medium or large sized software projects cannot

be developed in “notepad”

• Integrated development environment (IDE) are used for

these projects (Eclipse etc.)

Script Mode

• Once the scripts are written, they should be given a

filename with “.py” extension

• These script files can be executed by double-clicking on

the file

or

“python filename.py” from commandline or terminal• “python filename.py” from commandline or terminal

or

• From the Python interpreter

>>> import filename

Script Mode

• Sample script

File: test.py

A simple program for demonstration purpose

Def main():

print “Demo program“

x=input(“Enter a number between 0 and 1: “)x=input(“Enter a number between 0 and 1: “)

for i in range(10):

x=x*(1-x)

print x

main()

Intermediate Python Files

• When a module is imported or executed first time, a file

with “.pyc” extension is created

• This is an intermediate file for Python

• Python (as java and c#) uses a hybrid compiling /

interpreting process

Python source is compiled into more primitive • Python source is compiled into more primitive

instructions called byte code

• This makes the execution faster

• If you delete the byte code, Python will regenerate it

again

First Python Script

• Write a python script that computes the perimeter of a

circle whose radius is 3.2 cm.

• If you cannot solve a problem manually, you cannot

design an algorithm and implement it.

• Perimeter of a circle = 2 * pi * radius

radius = 3.2
pi = 3.14

perimeter = 2 * pi * radius

print('Perimeter of the circle is ' \

+ str(perimeter))

Elements of Programs

• Names: Names are assigned to variables, functions etc.

• These names are called identifiers

• Python (and many of the other programming languages)

has rules about how identifiers are formed

• Every identifier must begin with a letter or underscore

“_” which may be followed by any sequence of letter, “_” which may be followed by any sequence of letter,

digits or underscores

Counter1 3cities

_CityName big+city

name_surname ^new_variable

password4you good@school

Elements of Programs

• An identifier cannot contain any spaces

new constant

• Identifiers are case-sensitive

art Art aRt arT ARt aRT ART (all different variables)art Art aRt arT ARt aRT ART (all different variables)

• Identifiers can be chosen freely. However it is really

important to choose intelligent identifiers.

Good Choices for Identifiers

• Important aspects of coding

– Readability:

The code should be easily understood by others and

by you

After many years, you have to read your own code !

– Reusability

Code Readability

• What is the difference between

radius = 3.2
pi = 3.14

perimeter = 2 * pi * radius

print('Perimeter of the circle is ' \

+ str(perimeter))+ str(perimeter))

r= 3.2
r23 = 3.14

p = 2 * r * r23

print(str(perimeter))

Code Readability

• Even better � use comments as much as possible

This code computes the perimeter of circle
whose radius is 3.2 cm

radius of the circle
radius = 3.2

math constant pi
pi = 3.14

perimeter is computed as 2 times pi times radius
perimeter = 2 * pi * radius

print out the results
print('Perimeter of the circle is ' \

+ str(perimeter))

Naming Conventions for Identifiers

• There are many conventions available for naming

conventions.

• Conventions are available on the Internet

• Choose a convention and stick to it throughout the code

• In this course we will use either

– Camelcase

– Snakecase

• You can use anyone.

• Do not use both convention within the same code

Naming Conventions

• Camelcase convention

All white spaces and punctuations are removed

First letter of each world is capitalized

big city traffic � BigCityTrafficbig city traffic � BigCityTraffic

my brother’s car � MyBrothersCar

midterm #1 grade � Midterm1Grade

Naming Conventions

• Snakecase convention

All punctuations are removed

White spaces are replaced with underscore sign

big city traffic � big_city_trafficbig city traffic � big_city_traffic

my brother’s car � my_brothers_car

midterm #1 grade � midterm_1_grade

Identifiers

• Some of the names are reserved for Python statements

• These reserved words cannot be used for identifiers

• These reserved words are

and del for is raise

assert elif from lambda returnassert elif from lambda return

break else global not try

class except if or while

continue exec import pass yield

def finally in print

Expressions

• Fragments of code that produce or calculate new data

values are called expressions

• Simplest kind of expressions is literal

• A literal is used to indicate a specific value

>>> pi=3.14

3.14 is a numeric literal

• More complex expressions can be constructed by

combining expressions with operators

• Spaces within expressions are ignored. However, spaces

should be used for easy reading.

Python Mathematical Operators

• Python operators are

– Addition (+)

– Subtraction (-)

– multiplication (*)

– division (/)– division (/)

– exponentiation (**)

Operator Precedence

• Some operators have precedence over others

• Order of precedence from high to low

– Paranthesis

– Exponential

– Multiplication and division– Multiplication and division

– Addition and subtraction

Example

• Write a python code that converts fahrenheit to celcius

• Fahrenheit = 9*Celcius/5 + 32

celcius=100celcius=100

fahrenheit=9*celcius/5+32

print("celcius: " + str(celcius) +
" = fahrenheit: " + str(fahrenheit))

Output Statements

• “print” command is used in Python to display

information on screen

• print command can be used as

print(“something to display on screen”)

• Examples

print(“message part 1” + “message part 2”)

print(“2 * 5 =“ + str(10))

• + is used to combine strings

“message ” + “combined” � “message combined”

• str(…) is used to convert another type (such as integer,

float etc. � will be shown later) into a string

Assigning Input

• Purpose of an input statement is to get some information

from the user and store it into a variable

• This is accomplished using an assignment statement

combined with a special expression called “input”.

<variable>=input(<prompt>)

Prompt is an expression that serves to prompt the user • Prompt is an expression that serves to prompt the user

for input. This is almost always a string literal

>>> x = input(“Enter a value between 0 and 1”)

• Then it pauses and waits for user to type an expression

and press <Enter> key.

Assinging Input

• After the user hits <Enter> key, the input is assigned to
the variable

• For example

>>> temp = input(“Enter the temperature: “)

Enter the temperature: 30

>>> print(temp)>>> print(temp)

23

• The input is assigned as a string

• To convert string into an integer use int(…)

• To convert string into a floating number use float(…)

• Integers: -2, 45, 237

• Floating point numbers: 3.45, 0.004, -4.53

Assignment Statements

• Basic assignment statement in Python is

<variable> = <expr>

• This is an assignment NOT equality

i = i + 1 (this equality is never correct)

• Left side expression is evaluated and its result is assigned • Left side expression is evaluated and its result is assigned

to the variable on the right side.

fahrenheit = 9.0 / 5.0 * celcius + 32

• A variable can be assigned a value many times. It retains

the value of the latest assignment

Simultaneous Assignment

• Alternative to a single assignment , we can calculate and

assign many values at the same time

<var>, <var>, ..., <var> = <expr>, <expr>, ..., <expr>

• This is called simultanous assignment

• All of the expressions on the right hand side are

evaluated and their results are assigned to the evaluated and their results are assigned to the

corresponding variable at the left-hand side

>>> sum, diff = x+y, x-y

• This is equivalent to

>>> sum = x+y

>>> diff = x-y

Example

• Write a Python script that computes the sum of squared

numbers between 1 to 3.

total=0

total=total+1**2
total=total+2**2
total=total+3**2

print("Total is "+str(total))

Example

• Write a Python script that

1) gets the temperature from the user (in Celcius)

2) converts it to Fahrenheit

3) prints it on screen.

tmp=input("Enter temperature in Celcius: ")

celcius=float(tmp)
fahrenheit=9*celcius/5+32

print("Celcius: "+ str(celcius)
+ "= Fahrenheit: " + str(fahrenheit))

Example

• Write a Python script that

1) gets the 3 numbers from the user

2) computes their average

3) prints it on screen.

numbers=input('Enter 3 numbers: ')numbers=input('Enter 3 numbers: ')

num1,num2,num3=eval(numbers)

avg=1/3*(num1 + num2 + num3)
print("Average of " + str(num1) + " " +

str(num2) + " " +
str(num3) + " is " + str(avg))

Example

numbers=input('Enter 3 numbers: ')

num1,num2,num3=eval(numbers)

avg=1/3*(num1 + num2 + num3)
print("Average of " + str(num1) + " " +

str(num2) + " " +
str(num3) + " is " + str(avg))

• Values should be seperated using commas

str(num3) + " is " + str(avg))

Enter 3 numbers: 1,2,9
Average of 1 2 9 is 4.0

Example

• Write a Python script that

1) gets the radius from the user

2) computes the area of the circle

3) prints it on screen.

radius=float(input("Enter the radius: "))

area=radius**2

print("radius: "+ str(radius)
+ "--> area: " + str(area))

Example

• Write a program that converts US Dollars to a Turkish

Lira:

• get the amount of USD to be converted from the user

• get the exchange rate (US/TL) from the user

• prints the TL amount

radius=float(input("Enter the radius: "))

area=radius**2

print("radius: "+ str(radius)
+ "--> area: " + str(area))

Example

USD=float(input('Enter the amount of USD: '))
exchange_rate=float(input('Enter exchange rate USD/TL: '))

TL = USD * exchange_rate

print(str(USD) + ' USD = ' + str(TL) + 'TL')

• Output

Enter the amount of USD: 10
Enter exchange rate USD/TL: 1.82
10.0 USD = 18.2TL

